

SYNTHESIS OF Sn (II) DIHYDROPHOSPHAZENIDE AND ITS ANTIMICROBIAL STUDIES

ATUL VASHISTHA and S. P. S. JADON^{*}

Department of Chemistry, S. V. College, ALIGARH - 202001 (U.P.) INDIA

ABSTRACT

Complex of Sn (II) was synthesized with hexahydrocyclotriphosphazene and studied with the help of Mass, IR and EPR spectra, assigning its molecular formula as $(N_3P_3H_2)_6$ -Sn₃-P₄N₅ with quadridentated geometry. The complex has also found effective against *Klebsiella* gm-ve and *Staphylococcus* gm+ve bacteria.

Key words: Sn (II), Phosphazenide, Mass, IR, EPR.

INTRODUCTION

Various complexes of adducts of $(NPCl_2)_3$ with metals have been reported¹⁻⁸, but a few complexes of $(NPH_2)_3$ with metals have been synthesized⁹⁻¹². The investigations of reaction product of HHCPT with Sn (II) chloride are reported herewith.

EXPERIMENTAL

On the reduction of $(NPCl_2)_3$, by Na/EtOH, hexahydrocyclotriphosphazene $(NPH_2)_3$, was prepared, as white mass. Which was separated, washed with dry C_2H_5OH and ether, dried and stored in vacuo. The complex of $(NPH_2)_3$ with SnCl₂ was prepared by refluxing both in eqimolar ratio (1 : 1) in DMF for 6 to 8 h.

The yellowish mass, obtained, was separated, washed with C_6H_5Cl , C_2H_5OH & ether, dried and stored in vacuum desiccator over fused $CaCl_2$.

The complex was analysed qualitatively & quantitatively by well known methods¹³. EPR and mass spectra were recorded on Varians X–E–4 band (4 to 8 K Gauss at RT & LNT) & Jeol SX–102 (FAB), sepectrometers respectively. IR spectrum was graphed on Shimadzu 8201 PC ($4000 - 400 \text{ cm}^{-1}$) FTIR spectrometer.

^{*}Author for correspondence; E-mail: sps_jadon@yahoo.co.in

For antimicrobial activity of the complex, the in vitro technique was used. The equipments used, were well sterilized in autoclave. The gm-ve bacteria *Klebsiella* and gm+ve bacteria *staphylococcus* were grown by using nutrient broth media incubating at 37°C for 24 h and treated by the complex synthesized.

RESULTS AND DISCUSSION

The quantitative estimations, % found N-23.5, P - 49.7, H - 0.87 and Sn - 25.8 and molecular weight is 1371.5 g/mol, formulated the complex as $(N_3P_3H_2)_6 - Sn_3 - P_4N_5$ which is supported by the prominent mass line at m/z -1370 observed in its mass spectrum (Fig. 1 and Table 1). The other mass lines in its mass spectrum are explained by FAB fragmentation of Sn (II) DHP as follows –

M/z	Fragments				
101	$N_{3}P_{2}$ (M-3)				
217	$(N_3P_3H_2) - NP_2H_2 (M+2)$				
261	$(N_3P_3H_2) - NP_2H_2 - NPH_2$ (M-1)				
305	$(N_3P_3H_2) - Sn - NPH_2 (M+3)$				
349	$(N_3P_3H_2) - Sn - N_2P_2H_2$ (M+2)				
409	$(N_3P_3H_2)_2 - Sn - N (M + 3)$				
437	$(N_3P_3H_2)_2 - Sn - NP$				
497	$(N_3P_3H_2)_2 - Sn - N_3P_2 (M + 1)$				
675	$(N_3P_3H_2)_3 - Sn_2 - N_2$				
679	$(N_3P_3H_4)_3 - Sn_2 - N_2 (M-2)$				
854	$(N_3P_3H_4)_4 - Sn_2 - N_2P(M{+}3)$				
925	$(N_3P_3H_2)_4 - Sn_2 - N_3P_3H_4(M{+}2)$				
1265	$(N_3P_3H_2)_6 - Sn_3 - N_2P_2$ (M-1)				
1278	$(N_3P_3H_2)_6 - Sn_3 - N_3P_2$ (M-2)				
1370	$(N_3P_3H_2)_6 - Sn_3 - P_4N_5$				
1512	$(N_3P_3H_2)_8 - Sn_3 - N_2PH_2 (M+1)$				
1655	$(N_3P_3H_2)_8 - Sn_4 - N_2P_2$ (M-3)				
1837	$(N_3P_3H_2)_8 - Sn_4 - (P_3N_3)_2 (M-1)$				
1936	$(N_3P_3H_4)_8 - Sn_5 - N_2P_2H_4 (M+1)$				

Table 1: Mass spectral data of complex, Sn (II) DHP

The formation of this complex is supported by IR spectrum (Fig. 2), having the frequencies at 601.0 (b), 1021-1353.2 (sextet), 1465.5 (s), 1528.4 – 1547.5 (s), 1636.9 (d), 1704.4 – 1721.5 (tr), 2365.9 (d), 3427.8 (b) cm⁻¹, corresponding to P-N \rightarrow Sn, P-N, H-P-N and P = N bands, suggesting quadridentated co-ordination of P₃N₃ ring to Sn atom.

Both EPR spectra, recorded at RT & LNT have a single peak, indicating paramagnetic character of the complex. Which is also sustained by the values of μ_{eff} = 1.5492 & 2.1155 B. M. & magnetic susceptibility $\chi = 1.003 \times 10^{-3}$ and 2.8550 x 10⁻³ e.s.u. The value of g_z and g_{av} at LNT are 4.0728 and 2.4429 (Table 2), indicating the sharing of electrons of Sn atom i.e. Sn atom has linked covalently to P-N ring due to $p\pi$ - $p\pi$ bonding

along with its co-ordination through N atom of P-N rings, because the value of $g_x = g_y$, g_z and g_{av} (at RT, Table 2) are less than 2 corresponding to vacant energy shell of Sn atom to accept the electrons pair from N atom of P-N ring. Thus in the complex $p\pi$ - $p\pi$ bonding as well as co-ordinate linkage of Sn atom with phosphazene ring persist, forcing to suppose that complex is polymeric in nature & quadridentated, as shown in Fig. 3.

Temp.	Magnetic field H ₀ . (Gauss)	$\mathbf{g}_{\mathrm{x}} = \mathbf{g}_{\mathrm{y}}$	gz	g _{av}	μ _{eff} (B.M.)	χ x 10 ⁻³ esu
_	1	2	3	4	5	6
RT	3431	1.7181	1.9230	1.7890	1.5492	1.0003
LNT	1620	0.8112	4.0728	2.4429	2.1155	2.8550

Table 2: EPR spectra of complex

Fig. 1: Mass spectrum of complex

The complex has shown its effectiveness against *Klebsiella* gm-ve and *Staphylococcus* gm+ve bacteria. The inhibition of Sn (II) complex is 14 mm against staphylococcus & 13 mm (Fig. 4) against *Klebsiella* bectraia respectively. *Staphylococcus* bacteria is dangerous to open wounds, it can be responsible for septic. While the urinogential infection in human beings is caused by *Klebsiella* bacteria. The results of antimicrobial studies reveals that the complex of Sn (II) may be used for the treatment of wound healing and urinogential deseases in human beings.

Fig. 2: IR spectrum of complex (A) and Ligand (B)

Fig. 3: Structure of complex $(N_3P_3H_2)_6 - Sn_3 - P_4N_5$ Polymer

Fig. 4: Bactericidal effect of complex against Staphylococcus 'A' and Klebsiella 'B'

ACKNOWLEDGEMET

We express our thanks to the Director CDRI, Lucknow for providing the instrumental facility.

REFERENCES

- 1. Bosch Imma, G. V. Angel and V. Jamme, Inorg. Chem., 16, 5638-5648 (1996).
- 2. H. R. Allcock, C. A. Crane, C. T. Morrissey, J. M. Nelson, S. D. Reeves, C. D. Honeyman and I. Manners, Macromolecule, **29**, 7740 (1996).
- 3. Mc Hall A. Killer and S. S. Castondy, Analy. Chem., 68, 3489-3492 (1996).
- 4. J. F. Richard and H. R, Allcock, Inorg. Chem., 13, 2123-2132 (1997).
- 5. B. V. Karyn and H. R. Allcock, Inorg. Chem., **35**, 6337-6338 (1996).
- 6. A. V. Anil, J. E. Robert, L. Kirchmeier and J. M. Sheeve, Inorg. Chem., 2730-2745 (1997).
- G. Bossher, A. Meetsma and J. C. V. D. Grampel, J. Chem. Soc. Dalton Trans, 1667-1673 (1997).
- 8. J. Emsely and P. B. Udy, J. Chem. Soc., 3005 (1970).
- 9. A. Sundermann and W. W. Scholleg, Inorg. Chem., 38, 626 (1999).

- 10. S. P. S. Jadon, Asian J. Chem., 15, 151 (2003), 17, 1312 (2005).
- Y. Busleav, B. V. Levin, M. Z. G. Ry, S. P. Petrosynnts & B. V. Micronova Z. H. Neorg Khim., (Russ.) 14, 3245 (1969).
- 12. Y. P. Sing and S. P. S. Jadon, Int. J. Chem. Sci., 5, 2 (2007).
- 13. A. I. Vogel, A Text Book of Quantitative Inorg. Analysis, ELBS Publications Longmans London (1968).
- 14. N. Jain and S. P. S. Jadon, Asian J. Chem., 18, 730 (2006).

Revised : 31.12.2010

Accepted : 02.01.2011