

SYNTHESIS OF NEW *N*-LACTOSYLATED THIOCARBAMIDES

POONAM T. AGRAWAL and SHIRISH P. DESHMUKH^{*}

P.G. Department of Chemistry, Shri Shivaji College, AKOLA - 444001 (M.S.) INDIA

ABSTRACT

A series of new 1-hepta-O-benzoyl- β -D-lactosyl-3-substituted benzothiazolyl thiocarbamides have been synthesized by the interaction of hepta-O-benzoyl- β -D-lactosyl isothiocyanate with 2aminobenzothiazole/substituted benzothiazoles. The identities of these new *N*-lactosides have been established on the basis of usual chemical transformations and IR, NMR and Mass spectral studies.

Key words: Lactosyl isothiocyanate, Benzothiazolyl thiocarbamides.

INTRODUCTION

Benzothiazoles are bicyclic ring system with multiple applications. Although they have been known from long ago to be biologically active¹⁻⁴, their varied biological features are still of great scientific interest. Some derivatives of benzothiazoles possess antituberculosis, anticancer, antitumor, antipyretic activites^{5,6}.

In view of applications of benzothiazoles and its derivatives in medicinal chemistry and in many other ways, we herein report the synthesis of several 1-hepta-*O*-benzoyl- β -Dlactosyl-3-[2- substituted benzothiazolyl] thiocarbamides (**4a-f**) by the condensation of hepta-*O* –benzoyl - β -D-lactosyl isothiocyanate (**2**) with 2-aminobenzothiazole/ substituted benzothiazoles (**3a-f**). The required lactosyl isothiocyanate was prepared by the reaction of hepta-*O* –benzoyl - α -D-lactosyl bromide (**1**) with lead thiocyanate⁷ (Scheme 1). Required 2-aminobenzothiazoles / substituted benzothiazoles were prepared by the already known method of oxidative cyclization of 1-aryl thiocarbamides with the help of molecular bromine^{8,9} and 1-aryl thiocarbamides was prepared by reaction of aryl amine hydrochlorides with ammonium thiocyanate¹⁰.

^{*}Author for correspondence; E-mail: sharayu_deshmukh@rediffmail.com

Scheme 1

Scheme 2

Where,

R = (a) Phenyl, (b) 4-Cl, (c) 6-Cl, (d) 6-Methyl, (e) 4- Methyl and (f) 5- Methyl.

EXPERIMENTAL

Specific rotations were measured on Equip-Tronics digital polarimeter at 28^oC in CHCl₃. IR spectra were recorded on Perkin-Elmer spectrum RXI FTIR spectrophotometer (4000-450 cm⁻¹). ¹H NMR was recorded in CDCl₃ on Bruker DRX-300 spectrometer operating at 300 MHz. The mass spectra were recorded on Jeol-SX-102 (FAB) instrument.

Synthesis of 1-hepta-*O*-benzoyl-β-D-lactosyl-3-[2-substituted benzothiazolyl] thiocarbamides (4a-f) (Scheme 2)

A mixture of 1- hepta -O-benzoyl- β -D- lactosyl isothiocyanate (2) (0.005 M, 5.5 g in

35 mL) and (0.005 M, 0.8 g) 2-aminobenzothiazole/substituted benzothiazoles (3a-f) in 30 mL of benzene was refluxed for 3 h and monitored by TLC. After completion of the reaction, the solvent was triturated with petroleum ether (60-80^oC) to afford a white solid (4a-f). The products were purified from acetone- petroleum ether.

(4a) m.p. 155-160^oC; yield 70%, $[\alpha]^{28}_{D}$ +190^o (c, 1.11 in CHCl₃); **IR(KBr):** 3331 cm⁻¹ (N-H) 1758 cm⁻¹ (C=O), 1527 cm⁻¹ (C-N), 1237 cm⁻¹ (C-O), 1049 cm⁻¹ (C=S), 609 cm⁻¹ (C-S); ¹H NMR (ppm): δ 8.01-7.18 (39H, m, aromatic protons), 5.93-3.79 (16H, m, 14 lactosyl protons, 2 NH protons); **Mass (m/z):** 1252 (M⁺), 1145 (M-CH₃COOH), 1100 (M-CH₃COOH CH₂CO), 1052 (HBL⁺), 579 (TBG⁺), 391 (TBG⁺ -C₁₂H₁₂O₂), 335 (TBG-C₁₄H₁₂O₄), 105 (C₆H₅CO⁺); Anal. calcd for C₆₉H₅₅O₁₇N₃S₂: C, 67.77; H, 4.65; N, 3.33; S, 5.09%; Found: C, 67.71; H, 4.62; N, 3.31; S, 5.07%.

(4b) m.p. 162^{0} C; yield 80%, $[\alpha]^{28}{}_{D}$ +170⁰ (c, 1.11 in CHCl₃); **IR (KBr):** 3331 cm⁻¹ (N-H), 1758 cm⁻¹ (C=O), 1527 cm⁻¹ (C-N), 1237 cm⁻¹ (C-O), 1049 cm⁻¹ (C=S), 609 cm⁻¹ (C-S).; ¹H NMR (ppm): δ 8.02-7.19 (38H, m, aromatic protons), 5.91-3.79 (16H, m, 14 lactosyl protons, 2 NH protons); **Mass (m/z):** 1280 (M⁺), 1145 (M-CH₃COOH), 1100 (M-CH₃COOH CH₂CO), 1052 (HBL⁺), 579 (TBG⁺), 391(TBG⁺ -C₁₂H₁₂O₂), 335(TBG-C₁₄H₁₂O₄), 105 (C₆H₅CO⁺); Anal. calcd for C₆₉H₅₄O₁₇N₃S₂Cl: C, 67.77; H, 4.65; N, 3.24; S, 4.93%; Found: C, 67.78; H, 4.62; N, 3.21; S, 4.90%.

(4e) m.p. 160-170^oC; yield 72%, $[\alpha]^{28}_{D}$ +250^o (c, 1.11 in CHCl₃); **IR(KBr):** 3331 cm⁻¹ (N-H), 1758 cm⁻¹(C=O), 1527 cm⁻¹(C-N), 1237 cm⁻¹(C-O), 1049 cm⁻¹(C=S), 609 cm⁻¹(C-S).; ¹H NMR (ppm): δ 8.02-7.15 (38H, m, aromatic protons), 5.91-3.79 (16H, m, 14 lactosyl protons, 2 NH protons); 2.29 (3H, s, -CH₃); **Mass (m/z):** 1259 (M⁺), 1145 (M-CH₃COOH), 1100 (M-CH₃COOH CH₂CO), 1052 (HBL⁺), 579 (TBG⁺), 391 (TBG⁺ - C₁₂H₁₂O₂), 335 (TBG-C₁₄H₁₂O₄), 105 (C₆H₅CO⁺); Anal.calcd for C₇₀H₅₇O₁₇N₃S₂: C,67.77; H,4.65; N, 3.29; S, 5.01%; Found: C, 67.73; H, 4.65; N, 3.26; S, 4.99%.

RESULTS AND DISCUSSION

1-Hepta-*O*-benzoyl- β -D- lactosyl-3-[2- substituted benzothiazolyl] thiocarbamides **(4a-f)** were prepared by the condensation of 1-hepta-*O*-benzoyl- β -D-lactosyl isothiocyanate **(2)** with 2-aminobenzothiazole/ substituted benzothiazoles **(3a-f)** in benzene medium for 5 h. Then, the solvent was distilled off and sticky residue obtained was triturated with petroleum ether (60-80 °C) to afford a white solid **(4a-f)**. The structure of the products were confirmed on the basis of IR¹¹, NMR¹² and mass¹³ spectral analysis. The specific rotation of the products were also recorded¹⁴.

Table 1: 1-Hepta-O-benzoyl-β-D-lactosyl-3-substituted benzothiazolyl thiocarbamide (4a-f)

Reactants: (a) 1-Hepta-*O*-benzoyl-β-D-lactosyl-isothiocyanate (0.005M) (2) (b) Substituted benzothiazolyl thiocarbamides (**3a-f**)

Product	Melting point (°C)	Yield (%)	Analysis found (requires)		$[\alpha]^{28}$
			N (%)	S (%)	(c, 0.15)
4 a	155-160	70	3.31 (3.33)	5.01 (5.09)	190 [°] (c,0.156)
4 b	160-170	72	3.21 (3.24)	4.90 (4.93)	250 [°] (c,0.156)
4c	165-170	68	3.22 (3.24)	4.99 (4.93)	140 [°] (c,0.156)
4d	162-168	78	3.28 (3.29)	5.01 (5.01)	180 [°] (c,0.157)
4 e	162	80	3.26 (3.29)	4.99 (5.01)	170 [°] (c,0.157)
4 f	170-174	85	3.26 (3.29)	4.99 (5.01)	140 [°] (c,0.157)

ACKNOWLEDGEMENT

Authors are thankful to RSIC, CDRI Lucknow for providing the spectra and also to Dr. S. G. Bhadange, Principal, Shri Shivaji College, Akola for providing necessary facilities.

REFERENCES

- 1. C. H. Cao, C. J. Zhou, H. Y. Gao and Y. T. Liu, J. Chin. Chem. Soc., 48, 207 (2001).
- 2. M. Lacova, J. Chovancova, O. Hyblova and S. Varkonda, Chem. Pap., 44, 131 (1990).
- 3. I. Chnlak, V. Sntorins and V. Sederka, Chem. Pap., 44, 131 (1990).
- 4. T. Papenfnws, Ger. Offen. De., **3**, 528 (1987).
- 5. M. S. Shingare and D. B. Ingale, J. Indian Chem. Soc., 53, 1036 (1976).
- 6. B. Dash and M. Patra, Indian. J. Chem., **19B**, 894 (1980).
- 7. J. C. Bailer, H. J. Emeleus, R. Nyholm and A. F. Trotman, Comprehensive Inorganic Chemistry, **2**, Pergamon Press, New York, (1973) p. 141.
- 8. R. F. Hunter, J. Chem. Soc., 127, 2023 (1928).

- 9. H. P. Kaufman, Arch. Pharm, 266 (1925).
- 10. N. Krall and R. D. Gupta, J. Indian Chem. Soc., 12, 629 (1935).
- R. M. Silverstein, G. C. Bassler and T. C. Morril, Spectrometric Identification of Organic Compounds, 5th Ed., John Wiley and Sons, INC, New York, (2003) p. 108, 119, 120, 123.
- 12. N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, (2003) p. 279.
- 13. D. H. Williams and I. Flemming, Spectroscopic Methods in Organic Chemistry, 4th Ed., Tata McGraw-Hill Publication New Delhi, (2003), p. 40, 41, 47, 53.
- 14. Arnold Weissberger, Physical Methods of Organic Chemistry Part II, 2nd Ed. Interscience Publisher, Inc., New York (1949).

Revised : 14.05.2010

Accepted : 19.05.2010