

SYNTHESIS OF NEW *N*-LACTOSYLATED THIOCARBAMATES

POONAM T. AGRAWAL and SHIRISH P. DESHMUKH

P. G. Department of Chemistry, Shri Shivaji College, AKOLA - 444001 (M.S.) INDIA

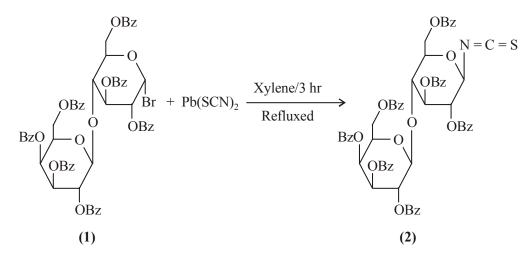
ABSTRACT

A series of new 1-hepta-O-benzoyl - β -D- lactosyl-3-alkyl thiocarbamates have been synthesized by the interaction of hepta-O-benzoyl- β -D-lactosyl isothiocyanate with various alcohols. The identities of these new *N*-lactosides have been established on the basis of usual chemical transformations, IR, NMR and Mass spectral studies.

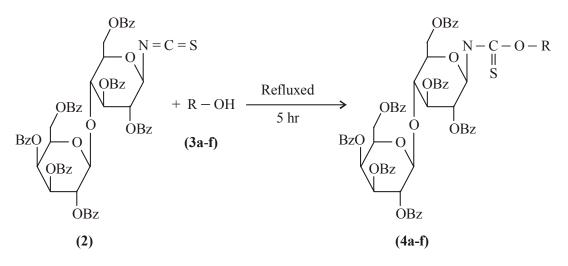
Key words: Lactosyl isothiocyanate, Thiocarbamates.

INTRODUCTION

Thiocarbamates and their derivatives show strong antimicrobial activity and are also a versatile reagent in organic synthesis¹. Although they have been known from long ago to be biologically active²⁻⁴, their varied biological features are still of great scientific interest. Some derivatives of these possess antituberculosis, anticancer, antitumor, antipyretic activites^{5,6}.


In view of applications of thiocarbamates and its derivatives in medicinal chemistry and in many other ways, we herein report the synthesis of several 1-hepta- O -benzoyl- β -Dlactosyl-O-alkyl thiocarbamates (**4a-f**) by the condensation of hepta-O –benzoyl - β -Dlactosyl isothiocyanate (**2**) with various alcohols (**3a-f**). The required lactosyl isothiocyanate was prepared by the reaction of hepta-O-benzoyl- α -D-lactosyl bromide (**1**) with lead thiocyanate⁷ (**Scheme 1**).

EXPERIMENTAL


Specific rotations were measured on Equip-Tronics Digital Polarimeter at 28°C in

^{*}Author for correspondence; E-mail: sharaya_deshmukh@rediffmail.com

CHCl₃. IR spectra were recorded on Perkin-Elmer spectrum RXI FTIR spectrophotometer (4000-450 cm⁻¹). ¹H NMR was recorded in CDCl₃ on Bruker DRX-300 spectrometer operating at 300 MHz. The mass spectra were recorded on Jeol-SX-102(FAB) instrument.

Where,

R = (a) Ethyl, (b) Methyl, (c) n-Propyl, (d) iso-Propyl, (e) n-Butyl and (f) t-Butyl.

Table 1: 1-Hepta-O-benzoyl-β-D-lactosyl -O-alkyl thiocarbamates (4a-f)

Product	Melting point (°C)	% Yield	Analysis found (required)		$[\alpha]^{28}_{D}$
			N (%)	S (%)	(c, 0.15)
4 a	153-155	78	1.20 (1.21)	2.71 (2.76)	$+85^{0}$
4 b	146-148	73	1.19 (1.20)	2.72 (2.79)	$+ 90^{0}$
4c	143-145	70	1.17 (1.19)	2.72 (2.73)	$+ 88^{0}$
4d	142-144	75	1.18 (1.19)	2.71 (2.73)	$+ 82^{0}$
4e	158-160	65	1.17 (1.18)	2.68 (2.70)	$+ 118^{0}$
4f	166-170	69	1.17 (1.18)	2.69 (2.70)	$+79^{0}$

Reactants: (a) 1-Hepta-O-benzoyl-β-D-lactosyl-isothiocyanate (0.005M) (2) (b) Different alcohols (3a-f)

Synthesis of 1-hepta-O-benzoyl-β-D-lactosyl-O-alkyl thiocarbamates (4a-f) (Scheme 1) (Table 1)

1-Hepta-*O*-benzoyl- β -D-lactosyl isothiocyanate (2) (0.005M, 3.5 g) was taken in 30 mL of alcohols (**3a-f**) and the reaction was carried out over boiling water bath for 5 h. Then the reaction mixture was poured into ice cold water, when 1-hepta-*O*-benzoyl- β -D-lactosyl – *O*-alkyl thiocarbamates (**4a-f**) separated out .

(4a). m.p. 153-155^oC; yield 78%, $[\alpha]^{28}{}_{D}$ +85^o (c,1.11 in CHCl₃); **IR(KBr):** 3427 cm⁻¹ (N-H),1730 cm⁻¹ (C=O), 1272 cm⁻¹ (C-N), 1237 cm⁻¹ (C-O), 1028 cm⁻¹ (C=S), 709 cm⁻¹ (C-S); ¹H NMR (ppm): δ 7.99-7.18 (35 H, m, aromatic protons), 5.93-3.76 (15H, m, 14 lactosyl protons, 1 NH protons), 2.99-1.60 (5H, m,-CH₂-CH₃); Mass (m/z): 1157 (M⁺), 1145 (M-CH₃COOH), 1100 (M-CH₃COOH) CH₂CO), 1052 (HBL⁺), 579 (TBG⁺), 391 (TBG⁺-C₁₂H₁₂O₂), 335 (TBG-C₁₄H₁₂O₄), 105 (C₆H5CO⁺); Anal. Calcd for C₆₄H₅₅O₁₈NS: C,66.37; H,4.75; N, 1.21; S, 2.76%; Found: C,66.31; H, 4.71; N, 1.20; S, 2.71%.

(4d). m.p. 142-144⁰C; yield 75%, $[\alpha]^{28}{}_{D}$ +82⁰ (c, 1.11 in CHCl₃); **IR(KBr):** 3445 cm⁻¹ (N-H), 1729.8 cm⁻¹(C=O), 1527 cm⁻¹ (C-N), 1175 cm⁻¹ (C-O), 1097 cm⁻¹ (C=S), 609 cm⁻¹ (C-S).; ¹H NMR (ppm): ¹H NMR (ppm) : δ 7.99-6.99 (35H, m, aromatic protons), 5.91-3.72 (15H, m, 14 lactosyl protons, 1 NH protons), 2.29-1.39 (7H, m, -CH(CH₃)₂); **Mass** (m/z): 1172 (M⁺), 1145 (M-CH₃COOH), 1100 (M-CH₃COOH CH₂CO), 1052 (HBL⁺), 579

(TBG⁺), $391(TBG^+ - C_{12}H_{12}O_2)$, 335 (TBG-C₁₄H₁₂O₄), 105 (C₆H₅CO⁺); Anal. Calcd for C₆₅H₅₇O₁₈NS: C, 66.60; H, 4.86; N, 1.19; S, 2.73%; Found: C, 66.57; H, 4.82; N, 1.18; S, 2.71%.

(4f). m.p. 166-170°C; yield 69%, $[\alpha]^{28}_{D}$ +79⁰ (c, 1.11 in CHCl₃); **IR (KBr):** 3458 (N-H), 1729.6 cm⁻¹ (C=O), 1527 cm⁻¹ (C-N), 1097 cm⁻¹ (C=S), 609 cm⁻¹ (C-S).; ¹H NMR (ppm): δ 8.05-7.18 (35H, m, aromatic protons), 5.91-3.79 (15H, m, 14 lactosyl protons, 1NH protons), 2.99-1.20 (9H, m, -C(CH₃)₃); **Mass (m/z):** 1186 (M⁺ + 1), 1145 (M-CH₃COOH), 1100 (M-CH₃COOH CH₂CO), 1052 (HBL⁺), 579 (TBG⁺), 391(TBG⁺ C₁₂H₁₂O₂), 335 (TBG-C₁₄H₁₂O₄), 105 (C₆H₅CO⁺); Anal. Calcd for C₆₆H₅₉O₁₈NS: C,66.83; H, 4.97; N, 1.18; S, 2.70%; Found: C, 66.69; H, 4.77; N, 1.15; S, 2.60%.

RESULTS AND DISCUSSION

1-Hepta- O -benzoyl- β -D- lactosyl-O-alkyl thiocarbamates (**3a-f**) were prepared by the condensation of 1-hepta-O-benzoyl- β -D-lactosyl isothiocyanate (**2**) with various alcohols (**3a-f**) for 5 h. Then, the solvent was distilled off and sticky residue obtained was triturated with petroleum ether (60-80 $^{\circ}$ C) to afford a white solid (**4a-f**). The structure of the products were confirmed on the basis of IR⁸, NMR⁹ and Mass¹⁰ spectral analysis. The specific rotation of the products were also recorded¹¹.

ACKNOWLEDGEMENT

Authors are thankful to RSIC, CDRI Lucknow for providing the spectra and also to Dr. S. G. Bhadange, Principal, Shri Shivaji College, Akola for providing necessary facilities.

REFERENCES

- 1. C. H. Cao, C. J. Zhou, H. Y. Gao and Y. T. Liu, J. Chin. Chem. Soc., 48, 207 (2001).
- 2. M. Lacova, J. Chovancova, O. Hyblova and S. Varkonda, Chem. Pap., 44, 131 (1990).
- 3. I. Chnlak, V. Sntorins and V. Sederka, Chem. Pap., 44, 131 (1990).
- 4. T. Papenfnws, Ger. Offen. De, **3**, 528 (1987).
- 5. M. S. Shingare and D. B. Ingale, J. Indian Chem. Soc., 53, 1036 (1976).
- 6. B. Dash and M. Patra, Indian J. Chem., **19B**, 894 (1980).
- 7. J. C. Bailer, H. J. Emeleus, R. Nyholm and A. F. Trotman, Comprehensive Inorganic Chemistry, **2**, Pergamon Press, New York (1973) p. 141.

- R. M. Silverstein, G. C. Bassler and T. C. Morril, Spectrometric Identification of Organic Compounds, 5th Ed., John Wiley and Sons, INC, New York, (2003) p. 108, 119, 120, 123.
- 9. N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (2003) p. 279.
- 10. D. H. Williams and I. Flemming, Spectroscopic Methods in Organic Chemistry, 4th Ed., Tata McGraw-Hill Publication, New Delhi (2003) p. 40, 41, 47, 53.
- 11. Arnold Weissberger, Physical Methods of Organic Chemistry Part II, 2nd Ed. Interscience Publisher Inc., New York (1949).

Revised : 18.05.2010

Accepted : 23.05.2010