Synthesis of γ-dispiro-iminolactones using bromo substituted α-dicarbonyl phenanthraquinone

Mohammad Qandalee*, Nad Ali Hasannataj*, S.Mohammad Vahdat, Mohammad Alikarami

1Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar, (IRAN)
2Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, (IRAN)
3Department of Chemistry, Ilam Branch, Islamic Azad University Ilam, (IRAN)

E-mail: qandalee@gmail.com

Received: 21st February, 2012 ; Accepted: 21st March, 2012

ABSTRACT

γ-Dispiro-iminolactones have been synthesized by the three component reaction between 3,6- dibromophenanthraquinone, dialkyl acetylenedicarboxylates and isocyanides via a one-pot mode in high yields. The method offers advantages such as ease of the work-up, high yields of products, mild reaction condition and short reaction times.

INTRODUCTION

Multicomponent reactions (MCRs) have been one of the most important developing fields in organic chemistry. Due to some advantages such as high yields of products, they have been one of the best strategies to produce important organic compounds such as heterocycles. The heterocyclic compounds are used in the design of biologically active compounds[11]. Also their pharmacological properties and easy synthetic conditions has made heterocycles as one of the best target molecules in organic synthesis[2-5]. Saegusa et al. reported Et$_2$AlCl-Mediated reaction of α,β-unsaturated carbonyls with methyl isocyanide leading to heterocyclic iminolactones. Also chahtani et al. reported the synthesis of iminolactone derivatives in the presence of catalytic amount of GaCl$_3$.[6-19]. In the present work we report a three component reaction between a dibromo substituted dicarbonyl compound, dialkyl acetylenic diesters and isocyanides in which dibromo γ-dispiro-iminolactones can be synthesized via a cyclization reaction (Scheme 1).

EXPERIMENTAL

General remarks

NMR spectra were recorded with BRUCKER
Full Paper

DRX-400 AVANCE spectrometer (at 400.1 MHz for 1H and 100.6 MHz for 13C NMR) with CDCl$_3$ as solvent. Mass spectra were recorded on a Finnigan-Matt 8430 mass spectrometer operating at an ionization potential of 70 eV. IR spectra were recorded on a FT-IR, Brucker, VECTOR22 spectrometer. TLC was carried out on Fluka silica gel TLC cards. All other reagents and solvents were used as received from commercial suppliers. All of the coupling constants are given in Hertz.

General preparative procedure (exemplified by 4a)

The solution of tert-butyl isocyanide (0.15 ml, 1.2 mmol) in CH$_2$Cl$_2$ (1 ml) was slowly added dropwise to the mixture of 3,6-dibromophenanthraquinone (0.183 g, 0.5 mmol) and DMAD (0.15 ml, 1.2 mmol) in dry CH$_2$Cl$_2$ (5 ml) for 5 min at room temperature. The solution was heated to 38°C for 24 h. Then, the reaction mixture was solidified into a solid product, the solvent was removed by filtration and the crystals of the products were washed with cold diethyl ether.

Spectroscopic data

Tetramethyl(5Z)-3′,6′-dibromo-5,5′-bis(tert-butylimino)-5H,5′H-dispiro[furan-2,9′-phenanthrene-10′,2′-furan]-3,3′,4,4′-tetracarboxylate (4a)

White powder, yield: 85 %. m.p. 227-230 °C. IR (KBr) ($\nu$$_{max}$/cm$^{-1}$): 1749 and 1699 (C=O), 1650 (2 C=N). 1H NMR (400.1 MHz, CDCl$_3$): δ = 1.37 (s, 18H, 2CMe$_3$), 3.28 and 3.79 (2s, 12H, 4OCH$_3$), 7.16 (d, 2H, 3J$_{HH}$ = 8.4 Hz, 2CH), 7.51 and 7.53 (dd, 2H, 3J$_{HH}$ = 8.4 Hz, 1J$_{HH}$ = 1.6 Hz, 2CH), 7.91 (d, 2H, 1J$_{HH}$ = 1.6 Hz, 2CH). 13C NMR (100.6 MHz, CDCl$_3$): δ = 29.5 (2CMe$_3$), 52.4 and 52.8 (4OCH$_3$), 55.15 (2NCMe$_3$), 91.32 (2C$_{spiro}$), 124.6, 126.6, 127.1, 130.5, 131.9, 132.3, 134.2, and 148.2 (C aromatic and iminolactones), 150.05 (2N=C$_{iminolactone}$), 160.7 and 161.4 (4 C=O esters).

MS: m/z (%): 818 (M$^+$ + 4), 816 (M$^+$ + 2), 814 (M$^+$), 762 (30), 760 (60), 758 (30), 706 (15), 704 (30), 702 (15), 196 (100), 194 (100), 57 (99), Anal. Calcd. for C$_{36}$H$_{36}$O$_6$N$_2$Br$_2$: 816.49; C, 52.95; H, 4.44; N, 3.43 %. Found: C, 52.36; H, 4.41; N, 3.39 %.

Tetraethyl(5Z)-3′,6′-dibromo-5,5′-bis(tert-butylimino)-5H,5′H-dispiro[furan-2,9′-phenanthrene-10′,2′-furan]-3,3′,4,4′-tetracarboxylate (4b)

White powder, yield: 77 %. m.p. 217-220 °C. IR (KBr) ($\nu$$_{max}$/cm$^{-1}$): 1737 and 1705 (4C=O), 1687 (2C=N). 1H NMR (400.1 MHz, CDCl$_3$): δ = 0.94 (t, 6H, 3J$_{HH}$ = 7.2 Hz, 2OCH$_2$CH$_2$), 1.32 (s, 18H, 2CMe$_3$), 1.39 (t, 6H, 3J$_{HH}$ = 7.2 Hz, 2OCH$_2$CH$_2$), 3.94 (m, 4H, 2OCH$_2$CH$_2$), 4.42 (q, 4H, 3J$_{HH}$ = 7.2 Hz, 2OCH$_2$CH$_2$), 7.21 (d, 2H, 3J$_{HH}$ = 8.4 Hz, 2CH), 7.63 and 7.65 (dd, 2H, 3J$_{HH}$ = 8.4 Hz, 1J$_{HH}$ = 1.6 Hz, 2CH), 8.12 (d, 2H, 1J$_{HH}$ = 1.6 Hz, 2CH). 13C NMR (100.6 MHz, CDCl$_3$): δ = 13.8 and 13.9 (4OCH$_3$), 28.3 (2CMe$_3$), 58.9 (2NCMe$_3$), 62.2 and 63.2 (4OCH$_2$CH$_2$), 86.5 (C$_{spiro}$) 121.9, 126.2, 126.3, 127.3, 127.7, 131.0, 131.1 and 142.0 (C aromatic and iminolactones) 151.1 (2C=N$_{iminolactone}$), 161.1 and 166.5 (4C=O$_{ester}$). MS: m/z (%): 874 (M$^+$ + 4, 1), 872 (M$^+$ + 2), 870 (M$^+$, 1), 621 (20), 619 (40), 617 (20), 518 (50), 516 (100), 514 (50), 179 (50), 57 (32), Anal. Calcd. for C$_{40}$H$_{44}$O$_{10}$N$_2$Br$_2$: 872.59; C, 55.05; H, 5.08; N, 3.21 %. Found: C, 55.01; H, 5.02; N, 3.18 %.

Tetraethyl(5Z)-3′,6′-dibromo-5,5′-bis(cyclohexylimino)-5H,5′H-dispiro[furan-2,9′-phenanthrene-10′,2′-furan]-3,3′,4,4′-tetracarboxylate (4c)

Yellow powder, yield: 88%. m.p. 210-213 °C. IR (KBr) ($\nu$$_{max}$/cm$^{-1}$): 1749 and 1685 (4C=O), 1645 (2C=N). 1H NMR (400.1 MHz, CDCl$_3$): δ = 1.17-1.83 (m, 20H, 10CH$_2$), 3.31 (s, 6H, 2OCH$_3$), 3.6 (m, 2H, 2N-CH$_2$), 3.83 (s, 6H, 2OCH$_2$CH$_2$), 7.15 (d, 2H, 3J$_{HH}$ = 8.4 Hz, 2CH), 7.52 and 7.54 (dd, 2H, 3J$_{HH}$ = 8.4 Hz, 1J$_{HH}$ = 1.6 Hz, 2CH), 7.92 (d, 2H, 1J$_{HH}$ = 1.6 Hz, 2CH). 13C NMR (100.6 MHz, CDCl$_3$): δ = 24.8, 24.9, 25.6, 33.0 and 33.2 (10CH$_2$), 52.5 and 52.9 (4OCH$_3$), 57.5 (2N-CH$_2$), 90.8 (2C$_{spiro}$), 124.6, 126.6, 127.2, 130.0, 131.8, 132.3, 134.4 and 147.9 (C aromatic and iminolactones), 152.6 (2C=N$_{iminolactone}$), 160.8 and 161.0 (4C=O$_{ester}$). MS: m/z (%): 870 (M$^+$ + 4), 868 (M$^+$ + 2), 866 (M$^+$, 3), 786 (50), 784 (100), 782 (50), 196 (70), 83 (50), Anal. Calcd. for C$_{40}$H$_{44}$O$_{10}$N$_2$Br$_2$: 886.56; C, 55.31; H, 4.64; N, 3.22 %. Found: C, 55.28; H, 4.59; N, 3.14 %.
Tetraethyl (5Z)-3′,6′-dibromo-5,5″-bis(cyclohexylimino)-5H,5″H-dispiro[2,9′-phenanthrene-10′,2″-furan-3,3″,4,4″-tetracarboxylate (4d)

White powder, yield: 78%. m.p. 171-174 °C. IR (KBr) (ν_{max} cm⁻¹): 1745 and 1690 (4C=O), 1650 (2C=N). ¹H NMR (400.1 MHz, CDCl₃): δ = 0.9 (t, 6H, ³J_{HH} = 7.2 Hz, 2OCH₃), 1.27 (t, 6H, ³J_{HH} = 7.2 Hz, 2OCH₃), 3.6 (m, 4H, 2OCH₂CH₃), 3.8 (m, 2H, 2N-CH), 4.3 (m, 4H, 2OCH₂CH₃), 7.15 (m, 2H, d, ³J_{HH} = 8.4 Hz, 2CH), 7.51 and 7.53 (dd, 2H, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 1.6 Hz, 2CH), 7.92 (d, 2H, ⁴J_{HH} = 1.6 Hz, 2CH). ¹³C NMR (100.6 MHz, CDCl₃): δ = 13.5 and 13.9 (4OCH₃CH₃), 24.8, 25.7, 32.9 and 33.1 (10 CH₃), 57.4 (2N-CH), 61.9 and 61.92 (4OCH₂CH₃), 90.7 (C_{spiro}), 124.6, 126.5, 127.3, 130.3, 131.0, 132.2, 134.2 and 148.0 (C aromatic and iminolactones), 152.8 (2C=O_{iminolactone}), 159.6 and 160.7 (4C=O_{ester}). MS: m/z (%): 914 (M⁺ + 4, 20), 912 (M⁺ + 2, 4), 910 (M⁺), 794 (25), 792 (50), 790 (25), 105 (100), 59 (25), Anal. Calcd. for C₄₄H₃₆O₁₀N₂Br₂, C, 57.91; H, 3.91; N, 3.06 %. Found: C, 57.89; H, 3.92; N, 3.02 %.

RESULTS AND DISCUSSION

The reaction mechanism is depicted in Scheme 2. In this process we can assume that in the first step nucleophilic isocyanide (1) attacks to the acetylenic diester (2). Then, the direct attack of zwitterion (5) to the carbonyl group of compound (3) leads to the formation of intermediate (6) which undergoes a cyclization reaction to afford the heterocyclic γ-dispiro-iminolactone (4) in high yield.

Scheme 2
The structures of the products (4a-e) were confirmed with their \(^1\)H, \(^13\)C NMR, IR, Mass and elemental analysis. All of the products of these reactions were stable solids. The IR spectrum of compound (4a) exhibited strong absorption bands at 1749 and 1699 cm\(^{-1}\) due to the esteric groups and also 1647 cm\(^{-1}\) due to C=N. The \(^1\)H NMR spectrum of (4a) showed one singlet for tert-butyl group (\(\delta = 1.37\) ppm) and two singlets for the methoxy groups (\(\delta = 3.28\) and 3.70 ppm). The \(^13\)C NMR spectrum of (4a) showed 16 distinct resonances which confirmed the proposed structure of (4a). The structure of (4a) was confirmed from the mass spectrum by displaying molecular ion peaks at m/z 816. The details of the structural analysis of all of the products can be found in the experimental section. The structure of (4b-e) showed the consistent peaks similar to (4a) except for the alkoxy and isocyanide groups that could be found in appropriate chemical shifts.

CONCLUSION

This study presents a one-pot three component reaction to synthesize halogenated iminolactones that can be a new strategy for the synthesis of halogenated heterocycles in high yields. The method offers advantages such as ease of the work-up, high yields of products, mild reaction condition and short reaction time.

REFERENCES

