ISSN(PRINT) : 2320 -1967 ISSN(ONLINE) : 2320 -1975

ORIGINAL ARTICLE

CHEMXPRESS 3(1), 1-10, (2014)

Synthesis of adsorbent materials based on polyaniline and agriculture waste by soaking method for removal heavy metal ions from solution

Thi Tot Pham¹, Thi Thanh Thuy Mai¹, Minh Quy Bui², Thi Xuan Mai¹, Thi Binh Phan^{1*}

 ¹Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, (VIETNAM)
 ²College of Sciences, Thai Nguyen University, Thainguyen, (VIETNAM) E-mail: phanthibinh@ich.vast.vn; phanthibinh.ich@gmail.com

Abstract : Composites based on polyaniline (PANi) and agriculture waste (peanut shell (PS), rice raw (RR)) prepared by soaking method for removal Cd²⁺ and Pb²⁺ ions from solution. It was found by IR-spectroscopy a clearly presence of PANi in composites. Their mophorlogical structure was shown in nano range due to SEM and TEM images. Cd²⁺ and Pb²⁺ ion concentrations in solution before and after adsorption process on those composites were analysed by atomic adsorption spectroscopy. The maximum adsorption capaci-

INTRODUCTION

Removal heavy metal from water by adsorption method is useful over the other such as biotechnology or electrochemistry because of low cost and simple implementation. Thus, many adsorbent materials have been developing for waste water treatment, which are prepared not only by chemical method^[1-3], but also by soaking one^[4]. Among them the materials based on polyaniline (PANi) and some agriculture waste such as sawdust, rice raw, rice husk, *etc.* are mentioned in recently literatures^[5-7], but, there are a lack of peanut shell (PS) and rice raw (RR) which may become composite ties of Pb^{2+} (185.1852 mg/g) and Cd^{2+} (131.5789 mg/g) ions onto PANi-PS were higher than those onto PANi-RR (158.7302 mg/g and 93.4579 mg/g for Pb²⁺ and Cd²⁺ ions, respectively). Their adsorption process occurred onto both composites fitted well into Langmuir isotherm model also. © Global Scientific Inc.

Keywords : Nanocomposite; Adsorption isotherm model; Heavy metal ion removal.

by soaking them into PANi solution. In this research, PANi-RR and PANi-PS will be compared with each other in the adsorption effect for Pb²⁺ and Cd²⁺ ions.

EXPERIMENTAL

Preparation of materials

Clean RR and PS were dried before grinded and sieved (0.27 mm). Their powder grains were ultrasonically washed by acetone, then fitrated and dried at 50°C for 1 day. The soaking method for preparing materials was done following as 2 g of RR or PS powder grain soaked into 20 ml of formic acid PANi solu-

tion (5 g L⁻¹) under stirring of 3 h and then still of the night. The product was dried under *vacuum* condition at 70 °C in 8 h.

Detection method

The structure of material was carried out by infrared spectrum on IMPACT 410-Nicolet unit. The surface morphology of them was examined by SEM on an equipment FE-SEM Hitachi S-4800 (Japan) and TEM on a Jeol 200CX (Japan). Adsorption ability of heavy metal ions on research material was characterized by atom adsorption spectroscopy (AAS) on an equipment Shimadzu AA-6800 (Japan).

Procedure of adsorption research

The mixtures of materials and solution containing mono heavy metal ion with different initial concentrations were swinged at 300 rpm for 40 min and then filtered to remove solid parts. The filtrate was analysized by AAS. The adsorption capacity (mg metal ion per g composite material) was determined by mass balance, as follows:

Figure 1 : SEM images of PANi-RR (a) and PANi-PS (b)

Figure 2 : TEM images of PANi-RR (a) and PANi-PS (b) composites

$$q = \frac{(C_0 - C) V}{m}$$

where C_{o} and C are metal ion concentrations (mg L⁻¹) before and after adsorption, respectively, V is the volume of the solution (mL) and m is the mass of adsorbent.

RESULTS AND DISCUSSIONS

Characterization of materials

SEM images

4

The images in Figure 1 showed that the both composites existed in nanostructure among them the fiber size of PANi-PS (b) was bigger than that of PANi-RR (a).

TEM images

(1)

There were found on TEM images (Figure 2) two different colours among them the light one belonging to PANi enclosing the dark one belonging to RR (a) or PS (b) which showing structure in nano range of both regarded composites. The obtained results from SEM and TEM analysis explained that nanostructured composites based on PANi and RR or PS were succesfully prepared by soaking method in our research.

Infrared spectrum analysis

The results given in Figure 3 and TABLE 1 explained that PANi existed in composites owing to vibration signals of benzoid and quinoid ring at 1625 cm⁻¹ and 1461 cm⁻¹ (b), 1628 cm⁻¹ and 1428 cm⁻¹ (d), respectively^[6]. Some other signals were found at 3392

Figure 3 : IR-spectra of RR (a), PANi-RR (b), PS (c), and PANi-PS (d)

 TABLE 1 : Vibration signal of IR-spectra from figure 3

Signal	s ν (cm ⁻¹)	Dinding	Signals v (cm ⁻¹)		Dinding
a (RR)	b (PANi-RR)	Binding	c (PS)	d (PANi-PS)	Dinuing
3429		V _{O-H}	3430		V _{O-H}
2914	2925	v _{C-H} aromatic	2903		V _{C-H-O}
1739		$v_{C=O}$ ester group in hemicellulose	1739	1721	$\nu_{C=O}\text{ester}$ group in hemicellulose
1650	1656	v_{H-O-H} in water molecular	1636	1653	$v_{C=C}$
1427, 1380		$v_{C=C}$ aromatic in lignin	1032	1032	V _{C-O}
1070, 1040	1055	$\nu_{\text{C-O}}$ in cellulose, hemicellulose and lignin		3447	V _{N-H}
	3392	$\nu_{\text{N-H}}$		2930	v_{C-H} aromatic
	1625	Benzoid		1628	Benzoid
	1461	Quinoid		1511	Quinoid
	1377	-N=quinoid=N-		1267	-N=quinoid=N-

cm⁻¹ (b), 3447 cm⁻¹ (d) assigning N-H stretching mode, 2925 cm⁻¹ (b) and 2930 cm⁻¹ (d) (C-H), 1377 cm⁻¹ (b) and 1267 cm⁻¹ (d) (-N=quinoid=N-). Otherwise, the vibration signal of C=O group at 1721 cm⁻¹ (d) belonging to ester group in hemicellulose containing in PS, C-O group at 1055 cm⁻¹ (b) belonging to cellulose, hemicellulose and lignin in RR, which explained that the presence of RR and PS in their composites^[8,9].

6

Figure 4 : Equilibrium adsorption isotherm for $Pb^{2+}(a, pH = 6)$ and $Cd^{2+}(b, pH = 5)$ onto composites (contact time of 40 min) following their initial concentration.

TABLE 2 : Langmuir parameters for Pb ²⁺ and Cd ²⁺	adsorption onto	composites
---	-----------------	------------

Composites	Metal cations	q_{max} (mg g ⁻¹)	$K_L (L mg^{-1})$	\mathbf{R}^2	Langmuir equation
PANi-RR	Pb^{2+}	158.7302	2.6250	0.9572	y = 0.0063x + 0.0024
	Cd^{2+}	93.4580	0.5245	0.9952	y = 0.0107x + 0.0204
DANE DO	Pb ²⁺	185.1852	1.2857	0.9936	y = 0.0054x + 0.0042
PAM-PS	Cd^{2+}	131.5789	0.2203	0.8804	y = 0.0076x + 0.0345

Adsorption models

The data given in Figure 7 showed that the adsorp-

tion capacity of both metal ions increased with increase of their initial concentration, however, an maximum

• Original Article

reached at C of 30 mg g⁻¹ and 41 mg g⁻¹ for Pb²⁺ and Cd²⁺, respectively. Their adsorption capacity on PANi-PS was higher than that on PANi-RR among them Pb²⁺ can adsorb better than Cd²⁺ as well. This might be due to the high affinity of those adsorbents for Pb²⁺ in comparision with Cd²⁺.

Langmuir isotherm model^[10]

$$\frac{C}{q} = \frac{1}{K_L q_{max}} + \frac{1}{q_{max}}C$$
(2)

where C is metal ion concentrations (mg L^{-1}) and q is adsorption capacity (mg g^{-1}) at equilibrium, K_L is the

Figure 5 : Langmuir model of Pb2+ (a) and Cd2+ (b) onto composites

Langmuir constant, q_{max} is the maximum adsorption capacity (mg g⁻¹).

The data given on TABLE 2 resulted from Figure 5 due to eqn. 2 showed that a maximum adsorption capacity q_{max} of Pb²⁺ and Cd²⁺ ions onto PANi-RR were 158.7302 mg g⁻¹ and 93.2580 mg g⁻¹, less than that onto PANi-PS (185.1852 mg g⁻¹ and 131.5789 mg g⁻¹), respectively. However, their adsorption process fitted into Langmuir model due to relatively high R² values.

The dimensionless Langmuir parameter R_L , which represents for characteristics of adsorption process, can

TABLE 3 : Dimensionless Langmuir parameter $R_{\rm L}$ for Pb^{2+} and Cd^{2+} adsorption onto composites

	Pb ²⁺		Cd ²⁺			
C ₀ (mg L ⁻¹)	R _L		Co	R _L		
	PANi-RR	PANi-PS	(mg L ⁻¹)	PANi-RR	PANi-PS	
3.860	0.0898	0.1677	5.070	0.2733	0.4069	
5.040	0.0703	0.1337	10.808	0.1500	0.2435	
21.190	0.0177	0.0354	15.858	0.1073	0.1799	
30.310	0.0124	0.0250	20.682	0.0844	0.1440	
41.160	0.0092	0.0185	30.377	0.0591	0.1028	
50.870	0.0074	0.0151	41.114	0.0443	0.0780	

Figure 6 : Freundlich model of $Pb^{2_+}(a)$ and $Cd^{2_+}(b)$ adsorption onto composites

------- Original Article

	TABLE 4 : Freundli	ch parameters for	Pb ²⁺ and Cd ²⁺ adso	orption onto co	mposites
Composites	Metal cations	$K_F (mg g^{-1})$	$N_F (L mg^{-1})$	\mathbf{R}^2	Freundlich equation
PANi-RR	Pb^{2+}	67.6239	3.5638	0.8393	y = 0.2806x + 1.8301
I ANI-KK	Cd^{2+}	44.8642	4.6620	0.7700	y = 0.2145x + 1.6519
DAN; DS	Pb^{2+}	68.4542	3.1133	0.9093	y = 0.3212x + 1.8354
1 ANI-1 5	Cd^{2+}	40.0682	3.0826	0.8503	y = 0.3244x + 1.6028
	TABLE 5 : Temkir	n parameters for P	b ²⁺ and Cd ²⁺ adsor	ption onto com	posites
Composites	Metal cations	$K_T (L g^{-1})$	b (kJ mol ⁻¹)	\mathbf{R}^2	Temkin equation
PANi-RR	Pb^{2+}	18.1946	0.0928	0.7906	y = 62.42x + 78.734
PAN1-KK	Cd ²⁺	24.0737	0.1829	0.8039	y = 31.671x + 43.804
PANi-PS	Pb ²⁺	11.2809	0.0754	0.8962	y = 76.858x + 80.972
17111-15	Cd ²⁺	3.3962	0.0996	0.7966	y = 58.161x + 30.918
	$ \begin{array}{c} 250 \\ 200 \\ \hline 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	(a)		PANi-P	S
	0 -().5 0.0	0.5 1.0	1.5	2.0
			LUGC		
	160 (120 -ິລິສິຫ b 40	PAN PAN	Ni-PS Ni-RR	(b)	
	0 0	0.0 0.4	0.8 1.2	1.6	2.0
			Log C		

Figure 7 : Temkin model of $Pb^{2+}(a)$ and $Cd^{2+}(b)$ adsorption onto composites

be defined as below:

$$\mathbf{R}_{\mathrm{L}} = \frac{1}{1 + \mathbf{K}_{\mathrm{L}} \mathbf{C}_{\mathrm{O}}} \tag{3}$$

where K_L is Langmuir constant (g L⁻¹), C_o is initial concentration (mg L⁻¹).

According to Foo *et al.*^[11], the calculated R_L values given on TABLE 3 indicating that adsorption of Pb²⁺ and Cd²⁺ ions onto both composites is favourable because of $0 < R_L < 1$, but however, favourable degree is cut down with increasing initial metal ion concentration due to decreasing R_L values.

Freundlich isotherm model^[12]

$$Log q = log K_{F} + (1/N_{F}) log C$$

where C is metal ion concentrations (mg L⁻¹) and q is adsorption capacity (mg g⁻¹) at equilibrium, K_F is Freundlich constant, N_F is Freundlich parameter.

(4)

As shown in Figure 6 and TABLE 4, the obtained results explained that adsorption of Pb²⁺ and Cd²⁺ ions onto both composites fitted not well into Freundlich isotherm model because of low R² values (0.77 \div 0.91), however, according to Dada *et al.*^[13], the adsorption process was also favourable because $1 < N_F < 5$.

Temkin isotherm model^[14]

$$q = \frac{R T}{b} \ln K_{T} + \frac{R T}{b} \ln C$$
 (5)

where C is metal ion concentrations (mg L⁻¹) and q is adsorption capacity (mg g⁻¹) at equilibrium, R is universal gas constant (8.314 J mol⁻¹ K⁻¹), T is Kelvin temperature (K), K_T is the Temkin isotherm equilibrium binding constant (L g⁻¹), b is Temkin isotherm constant (kJ mol⁻¹).

The less Temkin correlation coefficients (\mathbb{R}^2) for $\mathbb{C}d^{2+}$ ion (0.8039 and 0.7966) and $\mathbb{P}b^{2+}$ ion (0.7906 and 0.8962) in TABLE 5 resulted from Figure 7 indicating that Temkin equation can not be good used to model the adsorption of above ions onto both PANi-RR and PANi-PS as well.

CONCLUSION

Composites based on PANi and agriculture waste such as RR and PS can be used as inexpensive adsorbents for removing Pb²⁺ and Cd²⁺ ions from solution by adsorption among them PANi-PS composite is more effective one than PANi-RR. The adsorption process of both metal ions fitted into Langmuir isotherm model better than Freundlich and Temkin isotherm models, which occurred favourable with decreased degree by increasing initial metal concentration.

ACKNOWLEDGMENT

This study was financially supported by VAST of Vietnam under code number VAST. DL.03/12-13.

REFERENCES

- F.Belaib, A.H.Meniai, M.Bencheikh-Lehocine, A.Mansri, M.Morcellet, M.Bacquet, B.Martel; Desalination, 166, 371-377 (2004).
- [2] Reza Katal, Hassan Pahlavanzadeh; Journal of Vinyl and Additie Technology, 17(2), 138-145 (2011).
- [3] R.Ansari, H.Dezhampanah; Eur.Chem.Bull, 2(4), 220-225 (2013).
- [4] Phan Thi Binh, Pham Thi Tot, Mai Thi Xuan, Mai Thi Thanh Thuy, Bui Minh Quy, Nguyen The Duyen; Vietnam J.Chemistry, 51(2), 239-245 (2013).
- [5] R.Ansari, F.Raofie; **3**(10), 49-59 (2006).
- [6] Phan Thi Binh, Pham Thi Tot, Mai Thi Thanh Thuy, Mai Thi Xuan, Bui Minh Quy, Nguyen The Duyen; Asian J.Chemistry, 25(14), 8163-8168 (2013).
- [7] Mohsen Ghorbani, Mohammad Soleimani Lashkenari, Hossein Eisazadeh; Synthetic Metals, 161(13,14), 1430-1433 (2011).
- [8] J.Wannapeera, N.Worasuwannarak, S.Pipatmanomai; Songklanakarin J.Sci.Technol., 30(3), 393-404 (2008).
- [9] S.B.Daffalla, H.Mukhtar, M.S.Shaharun; J.Applied Sciences, 10(12), 1060-1067 (2010).
- [10] I.Langmuir; Am.J.Chem.Soc., 38(11), 2221-2295 (1916).
- [11] K.Y.Foo, B.H.Hameed; Chemical Engineering Journal, 156(1), 2-10 (2010).
- [12] H.M.F.Freundlich; Zeitschrift für Physikalische Chemie (Leipzig), 57A, 385-470 (1906).
- [13] A.O.Dada, A.P.Olalekan, A.M.Olatunya, O.Dada; IOSR Journal of Applied Chemistry, 3(1), 38-45 (2012).
- [14] M.J.Temkin, V.Pyzhev; Acta Physiochim USSR, 12, 217-225 (1940).