

SYNTHESIS OF -5-(SUBSTITUTED PHENYL)-5-(SUBSTITUTED BENZYL)-2-SUBSTITUTED HYDANTION S. V. KOLHE^{*}, R. E. BHADANGE, G. B. ANDHALE and A. R. SOMWANSHI

P.G. Department of Chemistry, Shri Shivaji College, AKOT, Dist. Akola (M.S.) INDIA

ABSTRACT

2-hydroxy-3-substituted acetophenone were refluxed in DMSO medium in presence of mercuric acetate to get substituted coumaran-3-ones. The resulting substituted coumaran-3-ones is refluxed with urea in alkaline medium and alcohol gives 5-(substituted phenyl)-5-(substituted benzyl)-2-substituted hydantion.

Key words: Substituted coumaran-3-one, Urea, Mercuric acetate, Substituted hydantion.

INTRODUCTION

Hydantion is an imidazole. Many of the physiologically compounds used in medicinal chemistry are imadazole derivatives.

Benzil ($\dot{\alpha}$ -diketone) condensed with urea¹ and substituted urea^{2,3} in alkaline ethanolic medium yielded hydantion. Hydantion and its derivatives have been reported as herbicidal, fungicides⁴, antidiabetic⁵, show anti HIV activity⁶, anticonvulsant⁷, antinociceptive activity⁸.

Substituted hydantion analogs as a novel class of antitumor agents⁹, antimicrobial activity¹⁰ and anti arrhythmic activity¹¹.

EXPERIMENTAL

The melting points were taken in a capillary tube, IR spectra were recorded in Nijol, ¹H NMR spectra were recorded in CDCl₃ with TMS as an internal slandered. The purity of synthesized compounds was check by TLC. The structural elucidation of compound was done on the basis of chemical and spectral data.

^{*}Author for correspondence; E-mail: sanjaykolhe22@yahoo.in

Preparation of 5-(2-hydroxy-3-nitro-5-chloro phenyl) 5-(ά-hydroxy-4-methoxy benzyl)-2-hydantion (II a)

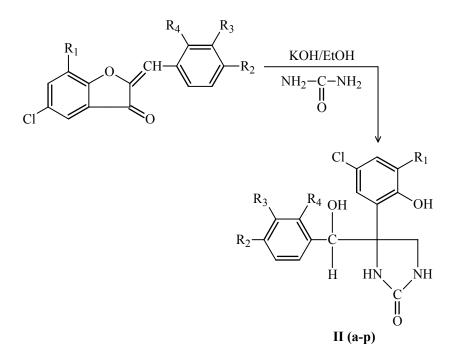
2-(4'methoxy benzylidene)-5- chloro-7-nitro coumaran-3-one (I a) (0.01 mole) and urea (0.01 mole) were dissolved in 40 mL of ethanol. To this mixture 10 mL of 10% KOH was added drop wise with constant stirring, allowed to stand for 2 to 3 hours. The reaction mixture was refluxed for 3 hrs. Cooled and then diluted with ice cold water washed several time with 1% NaHCO₃ solution and then with distilled water. It was then crystallized from ethanol to get 5-(2-hydroxy-3-nitro-5-chloro phenyl) 5-(α -hydroxy-4-methoxy benzyl)-2-hydantion (**II a**).

The structure of compound (II a) has been supported by chemical and spectral data.

Properties of the compound (II a)

- Deep buff color crystalline solid m.p. 126°C.
- It shows positive ferric chloride indicating non-involvement of phenolic –OH group.
- An IR spectrum was recorded in Nijol.

I.	3852	(-N-H, stretching).
----	------	---------------------


- II. 3853 (-N-H, stretching).
- III. 3815-3801 (-OH group stretching).
- IV. 1705 (Lactum cyclic C=O group stretching).
- V. 1511 (-NO₂ group symmetrical aromatic stretching).
- VI. 1340 (-NO₂ group unsymmetrical aromatic stretching).
- VII. 1251 (-NH bond stretching)
- VIII. 1060 (-CHOH group stretching).
- IX. 767 cm^{-1} (C-Cl group stretching).
- ¹H NMR in CDCl₃ with TMS as an internal standard.

I.	1.25	(s, 1H,-CH).
----	------	--------------

- II. 3.9 (s, 3H, Ar-OCH₃ group).
- III. 6.3-6.4 (broad, 1H -OH).
- IV. 6.8 (m, 6H, Ar-H).
- V. 6.9-7.8δ (s, 1H, Ar-OH).

These chemical and spectral data shows that compound **(II a)** is get 5-(2-hydroxy-3-nitro-5-chloro phenyl) 5- ($\dot{\alpha}$ -hydroxy-4-methoxy benzyl)-2-hydantion.

Similarly other compounds (II b–II p) were prepared by above method.

S. No.	Compounds	R ₁	\mathbf{R}_2	R ₃	R ₄	M.P. (°C)	Yield (%)
1	II a	NO_2	OCH ₃	Н	Н	126	76
2	II b	NO_2	Н	Н	Н	155	72
3	II c	NO_2	Н	Н	ОН	145	83
4	II d	NO_2	Н	NO_2	Н	128	78
5	II e	Н	Н	Н	Н	109	69
6	II f	Н	OCH ₃	Н	Н	98	82
7	II g	Н	Н	Н	OH	129	75

Table 1: Synthesized compounds, M.P.'s and yields

Cont...

S. No.	Compounds	R ₁	\mathbf{R}_2	R ₃	R ₄	M.P. (°C)	Yield (%)
8	II h	Н	Н	NO_2	Н	105	78
9	II i	Br	Н	Н	Н	121	84
10	II j	Br	OCH ₃	Н	Н	171	73
11	II k	Br	Н	Н	ОН	286	78
12	II I	Br	Н	NO_2	Н	242	76
13	II m	Cl	Н	Н	Н	197	82
14	II n	Cl	OCH ₃	Н	Н	137	86
15	II o	Cl	Н	Н	OH	142	78
16	II p	Cl	Н	NO_2	Н	124	81

REFERENCES

- Vogel's Test Book of Organic Practical Chemistry, 5th Ed., Longman Publication, UK (1989) p. 1153.
- 2. W. Garry Bowness and S. Balbir et al., J. Chem. Soc. Perkin, Tran-I, (II) (Eng.), 2649-2653 (1983).
- 3. J. Brown Christopher and A. R. Bulter, J. Chem. Soc., Perkin, Trans-II, (Eng.), 731-740, 3567-3572 (1989).
- 4. Schroder, Ludwing et al., Eur. Pat. Appl. Ep., 91, Oct., (1983), DE. Appl. 3, 213140, 08, Apr., (1982), p. 47.
- Eisiac Co. Ltd. Jpn. Kokai Tokkyo Koho Jp., 58, 213, 717, (1983), Appl. 83/6085, 20th Jan. (1982) p. 18.
- Comber, N. Robert, Revnolds, C. Robert et al., J. Med. Chem., (Eng.) 35(19), 3567-3572 (1992).
- 7. Rydzik, Elfrada, Kaminoka Anna, Acta. Pol. Pharm., (Pol.) 41(4), 459-464 (1984).
- 8. Zhou, Zinpei et al., Zbongguo Yooke Dacue Auebao, 22(6), 330-333 (1991).
- 9. A. M. Al-Obaid, H. I. El-Subbagh and A. l. Khodair, J. Anti-Cancer Drugs, 105-110 (1996).

- 10. Ewa Szymanska and Katarzyna Kiec-Kononowicz, Farmaco, 57(1), 39-44 (2002).
- 11. Wei Zhang and Lu Yimin, Org. Lett., **219**, 1015 (2010).

Revised : 09.09.2012

Accepted : 11.09.2012