Synthesis, characterization and antimicrobial study of oxobutanoate

Purvesh J. Shah
Department of Chemistry, Shree P.M. Patel Institute of P.G. Studies and Research in Science, Anand-388001, (INDIA)
E-mail: purvesh23184@gmail.com

KEYWORDS
Oxobutanoate; Spectral studies; Antimicrobial.

ABSTRACT
Various sulfonamide derivatives on reaction with ethylactoacetate furnished different ethyl-3-oxo-2-(2-(3-(N-alkyl sulfamoyl) phenyl) hydrazono) butanoates (2(a-j)). All the novel synthesised compounds (2(a-j)) were characterized by spectral studies. The compounds showed significant antimicrobial activity against various bacteria and fungi.

INTRODUCTION
Sulpha drugs are bacteriostatic and are also referred to as antibacterials. The sulphonamides are synthetic antimicrobial agents with a wide spectrum encompassing most Gram-positive and many Gram-negative organisms. These drugs were the first efficient treatment to be employed systematically for the prevention and cure of bacterial infections. The another compound say, oxobutyrates is an efficient cathodic inhibitor[1]. Ethyl 2-arylhydrazono-3-oxobutyrates showed significant antimicrobial activity[2]. The hydrazone products, ethyl 2-[(3,5-dimethylpyrazole-4-yl)hydrazono]-3-oxobutyrates and methyl 2-[(3,5-dimethylpyrazole-4-yl)hydrazono]-4-methoxy-3-oxobutanoate showed inhibition against M. tuberculosis, respectively[3]. The oxobutanoate derivatives gives many heterocyclic compounds[4-9]. Hence the present paper comprises the synthesis and characterization of novel 3-oxo-butanoate derivatives shown in schemes 1.

EXPERIMENTAL
All chemicals used were of laboratory grade. Various sulfonamide derivatives (1(a-j)) were prepared by reported method.[10] Melting points were determined in open capillary tubes and were uncorrected. IR spectra were recorded in KBr pellets on a Nicolet 760D spectrometer. 1H NMR and 13C NMR spectra were recorded in DMSO with TMS as internal standard on a Bruker spectrometer at 400 MHz and 100 MHz, respectively. LC-MS of selected samples taken on LC-MSD-Trap-SL_01046 instrument.

Ethyl 3-oxo-2-(2-(3-sulfamoylphenyl) hydrazono) butanoate (2a)
3-aminobenzesulfonamide (1a) (0.01 mole) was dissolved in a mixture of HCl (8ml) and water (6ml) and cooled to 0°C in ice bath. To it a cold aqueous solution of sodium nitrate (0.03mole) was added. The diazonium salt solution was filtered into a cooled solution of ethyl actoacetate (0.01 mole) and sodium acetate (0.12mole) in ethanol (50ml). The resulting solid was washed with water and recrystallized from EtOH/MeOH. Yield 84%; m.p.166-168°C. IR [v, cm⁻¹, KBr]:3034-3086(C-Haromatic),2920,1465 (CH₃, CH₂),1290(C-N),1725-1765 (C=O), 1148(C-O),1325(SO₂),905(S-N), 3369(N-H), 1695-1540 (C=N), 706-585(C-S). 1H NMR [400MHz,δ, ppm,
Sodium acetate
Ethyl acetoacetate
NaNO₂/HCl

Schemes 1

DMSO-d₆: 1.34 (t, 3H, CH₃), 4.29 (q, 2H, COCH₂), 2.35 (s, 3H, COCH₃), 6.90 - 7.67 (m, 4H, ArH), 11.62 (s, 1H, NH), 7.42 (s, 2H, NH).¹³CN-MR [100MHz, δ, ppm, DMSO]: 114.8 - 143.6 (Ar-C), 14.2, 26.9 (CH₃), 61.4 (CH₂), 165.4, 195.4 (CO). LC-MS: m/z 321 (M⁺).

Anal. Calcd for C₁₂H₁₅N₃O₅S (313): C, 46.00; H, 4.83; N, 13.41; S, 10.23. Found: C, 45.9; H, 4.8; N, 13.4; S, 10.2.

Ethyl 2-(2-(3-(N-acetylsulfamoyl) phenyl) hydrazono) -3-oxobutanoate (2b)

N-(3-aminophenylsulfonyl)acetamide (1b) (0.01 mole) was dissolved in a mixture of HCl (8ml) and water (6ml) and cooled to 0°C in ice bath. To it a cold aqueous solution of sodium nitrate (0.03 mole) was added. The diazonium salt solution was filtered into a cooled solution of ethyl acetoacetate (0.01 mole) and sodium acetate (0.12 mole) in ethanol (50ml). The resulting solid was washed with water and recrystallized from EtOH/MeOH. Yield 81%; m.p. 156 - 158°C. IR [v, cm⁻¹, KBr]: 3034-3086 (C-H aromatic), 2920, 1465 (CH₃, CH₂), 1290 (C-N), 706-585 (C-S).¹³H NMR [400MHz, δ, ppm, DMSO-d₆]: 1.34 (t, 3H, CH₃), 4.29 (q, 2H, COCH₂), 2.35 (s, 3H, COCH₃), 6.90 - 7.72 (m, 8H, ArH), 11.62 (s, 1H, NH), 7.54 (s, 1H, NH).¹³CN-MR [100MHz, δ, ppm, DMSO]: 114.8 - 154.6 (Ar-C), 14.2, 26.9 (CH₃), 61.4 (CH₂), 165.4, 195.4 (CO). LC-MS: m/z 367 (M⁺). Anal. Calcd for C₁₄H₁₇N₃O₆S (355): C, 47.32; H, 4.82; N, 11.82; S, 8.9. Found: C, 47.3; H, 4.8; N, 11.8; S, 8.9.

Ethyl 3-oxo-2-(2-(3-(N-pyridin-2-ylsulfamoyl) phenyl) hydrazono) butanoate (2c)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 76%; m.p. 173 - 175°C. IR [v, cm⁻¹, KBr]: 3034-3086 (C-H aromatic), 2920, 1465 (CH₃, CH₂), 1290 (C-N), 1725-1765 (C=O), 1325 (SO₂), 905 (S-N), 3369 (N-H), 1695-1540 (C=N).¹³C NMR [100MHz, δ, ppm, DMSO]: 114.8 - 154.6 (Ar-C), 14.2, 26.9 (CH₃), 64.8 (CH₂), 165.4, 195.4 (CO). LC-MS: m/z 402 (M⁺). Anal. Calcd for C₁₇H₁₈N₄O₅S (390): C, 52.30; H, 4.65; N, 14.35; S, 8.21. Found: C, 52.2; H, 4.6; N, 14.3; S, 8.1.

Ethyl 3-oxo-2-(2-(3-(N-pyrimidin-2-ylsulfamoyl) phenyl) hydrazono) butanoate (2d)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 78%; m.p. 148 - 149°C. IR [v, cm⁻¹, KBr]: 3034-3086 (C-H aromatic), 2920, 1465 (CH₃, CH₂), 1290 (C-N), 1725-1765 (C=O), 1325 (SO₂), 905 (S-N), 3369 (N-H), 1695-1540 (C=N).¹³C NMR [100MHz, δ, ppm, DMSO]: 114.8 - 170.6 (Ar-C), 14.2, 26.9 (CH₃), 64.8 (CH₂), 165.4, 195.4 (CO). LC-MS: m/z 406 (M⁺). Anal. Calcd for C₁₇H₁₈N₄O₅S (390): C, 52.3; H, 4.65; N, 14.3; S, 8.1. Found: C, 52.2; H, 4.6; N, 14.3; S, 8.1.
Full Paper

Anal. Calcd for C_{16}H_{22}N_{5}O_{6}S (391): C, 49.10; H, 4.38; N, 17.89; S, 8.19. Found: C, 49.0; H, 4.3; N, 17.8; S, 8.1.

Ethyl 2-(2-(3-(N-(4-methoxyimridin-2-yl)sulfamoyl)phenyl)hydrazono)-3-oxobutanoate (2e)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 77%; m.p. 143-145°C. IR [v,cm^{-1},KBr]: 3034-3086(C-Haromatic), 2920, 1465 (CH, CH), 1290(C-N), 1725-1765(C=O), 1148(C=O), 1325(S=O), 905 (S-O), 3369(N-H), 1695-1540 (C=N), 706-585(C-S). ^1H NMR [400MHz, δ, ppm, DMSO-d_6]: 1.34(t, 3H, CH), 2.35 (s, 3H, COCH_3), 3.92(s,3H,CH). ^13C NMR [100 MHz, δ, ppm, DMSO]: 114.8-170.6(Ar-C), 14.2, 22.5, 26.9 (CH_3), 61.4, 165.4, 195.4(CO). LC-MS: m/z 436(M^+). Anal. Calcd for C_{17}H_{19}N_{5}O_{6}S (422): C, 48.45; H, 4.54; N, 16.6; S, 7.6.

Ethyl 3-oxo-2-(2-(3-(N-thiazol-2-ylsulfamoyl)phenyl)hydrazono)-3-oxobutanoate (2h)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 78%; m.p. 141-143°C. IR [v,cm^{-1},KBr]: 3034-3086(C-Haromatic), 2920, 1465 (CH, CH), 1290(C-N), 1725-1765(C=O), 1148(C=O), 1325(S=O), 905(S-N), 3369(N-H), 1695-1540 (C=N), 706-585(C-S). ^1H NMR [400MHz, δ, ppm, DMSO-d_6]: 1.34(t, 3H, CH), 4.29 (q, 2H,COCH_2), 2.35 (s, 3H, COCH_3), 3.92(s,3H,CH). ^13C NMR [100 MHz, δ, ppm, DMSO]: 114.8-171.8(Ar-C), 14.2, 26.9 (CH_3), 61.1, 165.4, 195.4(CO). LC-MS: m/z 408(M^+). Anal. Calcd for C_{17}H_{18}N_{5}O_{6}S (396): C, 45.44; H, 4.07; N, 14.13; S, 16.18. Found: C, 45.4; H, 3.9; N, 14.1; S, 16.1.

Ethyl 2-(2-(3-(N-(4,6-dimethylimridin-2-yl)sulfamoyl)phenyl)hydrazono)-3-oxobutanoate (2f)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 76%; m.p. 145-147°C. IR [v,cm^{-1},KBr]: 3034-3086(C-Haromatic), 2920, 1465 (CH, CH), 1290(C-N), 1725-1765(C=O), 1148(C=O), 1325(S=O), 905(S-N), 3369(N-H), 1695-1540 (C=N), 706-585(C-S). ^1H NMR [400MHz, δ, ppm, DMSO-d_6]: 1.34(t, 3H, CH), 2.35(s, 3H, COCH_3), 3.92(s,3H,CH). ^13C NMR [100 MHz, δ, ppm, DMSO]: 114.8-170.6(Ar-C), 14.2, 24.5, 26.9 (CH_3), 61.4, 165.4, 195.4(CO). LC-MS: m/z 427(M^+). Anal. Calcd for C_{15}H_{17}N_{5}O_{6}S (419): C, 43.7; H, 4.1; N, 17.8; S, 8.1.

Ethyl 2-(2-(3-(N-(4-methoxyimridin-2-yl)sulfamoyl)phenyl)hydrazono)-3-oxobutanoate (2g)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 76%; m.p. 147-149°C. IR [v,cm^{-1},KBr]: 3034-3086(C-Haromatic), 2920, 1465 (CH, CH), 1290(C-N), 1725-1765(C=O), 1148(C=O), 1325(S=O), 905(S-N), 3369(N-H), 1695-1540 (C=N), 1380(C=O) 706-585(C-S). ^1H NMR [400MHz, δ, ppm, DMSO-d_6]: 1.34(t, 3H, CH), 2.35(s, 3H, COCH_3), 6.90-7.67(m, 6H, ArH), 7.42 (s, 1H, CH), 3.92(s, 3H, CH). ^13C NMR [100 MHz, δ, ppm, DMSO]: 114.8-167.6(Ar-C), 14.2, 26.9, 50.8 (CH_3), 61.4(CH_3), 165.4, 195.4(CO). LC-MS: m/z 436(M^+). Anal. Calcd for C_{17}H_{19}N_{5}O_{6}S (422): C, 48.45; H, 4.54; N, 16.62; S, 7.61. Found: C, 48.4; H, 4.5; N, 16.6; S, 7.6.
Ethyl 2-(2-(3-(N-(3,4-dimethylisoxazol-5-yl)sulfamoyl)phenyl)hydrazono)-3-oxobutanoate (2j)

Prepared as per the procedure mentioned for compound (2a) and (2b). Yield 83%; m.p.139-141°C. IR [v/cm⁻¹, KBr]: 3034-3086 (C-H aromatic), 2920, 1465 (CH₃, CH₂), 1290 (C-N), 1725-1765 (C=O), 1325 (SO₂), 3369 (N-H), 1695-1540 (C=N), 1040 (O-N), 706-585 (C-S).

IR: 3034-3086 (C-H aromatic), 2920, 1465 (CH₃, CH₂), 1290 (C-N), 1725-1765 (C=O), 1325 (SO₂), 3369 (N-H), 1695-1540 (C=N), 1040 (O-N), 706-585 (C-S).

¹H NMR [400MHz, δ, ppm, DMSO-_{d6}]: 1.34 (t, 3H, CH₃), 4.29 (q, 2H, COCH₂), 2.35 (s, 3H, COCH₃), 6.90-7.50 (m, 4H, ArH), 11.62 (s, 1H, NH), 7.42 (s, 1H, NH), 2.25 (s, 6H, CH₃).

¹³C NMR [100 MHz, δ, ppm, DMSO]: 114.8-162.8 (Ar-C), 9.5, 11.8, 14.2, 26.9 (CH₃), 61.1 (CH₂), 165.4, 195.4 (C=O).

LC-MS: m/z 416 (M+).

Anal. Calcd for C₁₇H₂₀N₄O₆S (408): C, 49.99; H, 4.94; N, 13.72; S, 7.85. Found: C, 49.9; H, 4.9; N, 13.7; S, 7.8.

RESULTS AND DISCUSSION

The synthesis of (1a-h) has been performed based on the method reported¹⁰. From these compounds the novel compounds (2a-h) have been synthesized. All the compounds were confirmed on the basis of the elemental analysis and spectroscopic investigation. IR spectroscopic investigation of (2a-h) reveals bands at 1640-1596 (C=N) and ¹H NMR δ 11.62 (s, 1H, NH). The examination of these data reveals that the IR band and ¹H NMR signals are appropriate to the correspond structure of compound. The final structure of all compounds was confirmed by ¹³C NMR and LC-MS data, i.e. The compounds (2a) shows the molecular ion peak m/z 326 give the molecular weight of 2a i.e. 313. All these facts confirm the structures (2a-j).

Antibacterial activities

Antibacterial activities of all the compounds were studied against Gram–positive Bacteria (*Bacillus subtilis* and *Staphylococcus aureus*) and Gram-negative Bacteria (*E. coli, Salmonella typhi* and *Klebsiella pneumoniae*) at a concentration of 50μg/ml by Agar cup plate method. Methanol system was used as control in this method. Under similar condition using sulphonamide as a standard for comparison carried out control experiment. The area of inhibition of zone measured in mm. Compound (2e) and (2f) found more active against the above microbes. Other compounds were found more active against the above microbes. The antibacterial activities all compounds are shown in TABLE 1.

CONCLUSION

The present study reports the synthesis of novel oxobutyrates from the corresponding sulfonamide derivatives (2a-j). The antimicrobial activity of ethyl-3-oxo-2-(3-(N-alkyl sulfamoyl)phenyl) hydrazono)butanoates (2a-j) and *Staphylococcus aureus* and Gram-negative Bacteria (*E.coli, Salmonella typhi* and *Klebsiella pneumoniae*) at a concentration of 50μg/ml by Agar cup plate method. Methanol system was used as control in this method. Under similar condition using sulphonamide as a standard for comparison carried out control experiment. The area of inhibition of zone measured in mm. Compound (2e) and (2f) found more active against the above microbes. Other compounds were found more active against the above microbes. The antibacterial activities all compounds are shown in TABLE 1.

TABLE 1: Antibacterial activity of ethyl-3-oxo-2-(2-(3-(N-alkyl sulfamoyl)phenyl)hydrazono)butanoates (2a-j)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Zone of Inhibition(mm) (Activity Index)<sup>std</sup></th>
<th>Gram+ve</th>
<th>Gram–ve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacillus Subtilis</td>
<td>Staphylococcus Aureus</td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>2a</td>
<td>53 (0.62)</td>
<td>46 (0.83)</td>
<td>66 (0.80)</td>
</tr>
<tr>
<td>2b</td>
<td>46 (0.54)</td>
<td>50 (0.90)</td>
<td>75 (0.91)</td>
</tr>
<tr>
<td>2c</td>
<td>80 (0.94)</td>
<td>46 (0.83)</td>
<td>76 (0.92)</td>
</tr>
<tr>
<td>2d</td>
<td>81 (0.95)</td>
<td>49 (0.89)</td>
<td>74 (0.90)</td>
</tr>
<tr>
<td>2e</td>
<td>84 (0.98)</td>
<td>54 (0.98)</td>
<td>80 (0.97)</td>
</tr>
<tr>
<td>2f</td>
<td>82 (0.96)</td>
<td>52 (0.94)</td>
<td>78 (0.95)</td>
</tr>
<tr>
<td>2g</td>
<td>78 (0.91)</td>
<td>49 (0.89)</td>
<td>74 (0.90)</td>
</tr>
<tr>
<td>2h</td>
<td>80 (0.94)</td>
<td>48 (0.87)</td>
<td>76 (0.92)</td>
</tr>
<tr>
<td>2i</td>
<td>50 (0.90)</td>
<td>46 (0.54)</td>
<td>75 (0.91)</td>
</tr>
<tr>
<td>2j</td>
<td>76 (0.92)</td>
<td>46 (0.83)</td>
<td>80 (0.94)</td>
</tr>
<tr>
<td>Sulphonamide</td>
<td>85</td>
<td>55</td>
<td>82</td>
</tr>
</tbody>
</table>

^{std} Zone of Inhibition of sample/ Zone of Inhibition of the standard.

The antibacterial activities of all compounds were studied against Gram–positive Bacteria (*Bacillus subtilis* and *Staphylococcus aureus*) and Gram-negative Bacteria (*E.coli, Salmonella typhi* and *Klebsiella pneumoniae*).
butanoates (2(a-j)) was carried out against some strain bacteria. The results show that the synthesized compounds were toxic against the bacteria. The investigation of antibacterial screening reveals that the compounds (2e) and (2f) have exhibited good antibacterial activity comparable to the standard drugs, while compounds (2e) and (2f) displayed better antifungal activity.

REFERENCES