

SYNTHESIS, ANTIMICROBIAL AND ANTIFUNGAL STUDY OF 2-(5–ARYL-1-SUBSTITUTED-PYRAZOL-3-YL)-SUBSTITUTED NAPHTHALENE-1-OL BY DEHYDROGENATION METHOD B. P. KHOBRAGADE^{*} and P. T. KOSANKAR^a

Research Student, RTM Nagpur University, NAGPUR (M.S.) INDIA ^aDepartment of Chemistry, Yashwantrao Chavan C. O. E., NAGPUR – 33 (M.S.) INDIA

ABSTRACT

2-(5-aryl-4,5-dihydro-1-substituted-pyrazol-3-yl)-substituted naphthalene-1-ol were suspended in DMSO and crystal of iodine was added to it. The mixture was refluxed for 1½ hour, cooled and then diluted with water. The solid mass obtained was filtered, washed with 10% aqueous sodium thiosulphate and crystallized from ethanol acetic acid mixture to get 2-(5-aryl-1-substituted-pyrazol-3-yl)-substituted naphthalene-1-ol. The synthesized compounds are characterized by elemental analysis, ¹H NMR, IR spectroscopy. Newly synthesized compound shows an excellent antimicrobial and antifungal activities.

Key words: Pyrazoles, Antimicrobial activity, Antifungal activity, Dehydrogenation method.

INTRODUCTION

Due to difficulty of living organisms to construct the N-N bond, very few pyrazoles and their derivatives are found in living things heterocyclic compounds containing nitrogen e.g. alkaloids, amides, nucleotides/nucleosides etc. are widely distributed in nature and play an important role in the metabolism of all living cells. Pyrazoles are a class of 1,2-diazole systems having varied pharmacological activities such as antimicrobial, anti-inflammatory, analgesic, antipyretic antidepressant, antitumor, antitubercular, antirheumatic and selective COX-2 inhibitor activity¹⁻⁹.

Pyrazoles also have played a crucial part in the development of heterocyclic chemistry and useful as synthons in organic synthesis¹⁰⁻¹². Present work deals with the synthesis of 2-(5-aryl-1-substituted-pyrazol-3-yl)-substituted-naphthalene-1-ol and their characterization by spectral analysis (IR, ¹H NMR)

^{*}Author for correspondence; E-mail: subodhb@rediffmail.com

EXPERIMENTAL

All the melting points were taken in silicon oil bath with open capillary tubes and are uncorrected. IR spectra were recorded on a Nicolet-Impact 400 FT-IR spectrometer ¹H NMR spectra were recorded on a Brucker AC300 FNMR spectrometer (300 MHz), using TMS as an internal standard. Microanalysis of nitrogen was obtained by Kjeldahal's Method. Thin Layer Chromatography on silica gel-G, was used to check the purity of the compounds.

Synthesis of 2-(5-aryl-1-substituted-pyrazol-3-yl)-substituted-naphthalene-1-ol

2-(5–aryl-4,5–dihydro-1-substituted-pyrazol-3-yl)-substituted naphthalene-1-ol were suspended in DMSO and crystal of Iodine was added to it. The mixture was refluxed for 1¹/₂ hour, cooled and then diluted with water. The solid mass obtained was filtered, washed with 10% aqueous sodium thiosulphate and crystallized from ethanol acetic acid mixture to get 2-(5–aryl-1-substituted-pyrazol-3-yl)-substituted-naphthalene-1-ol.

Where R = H, Cl, $R_1 = H$, Cl, NO, $R_2 = H$, F, NO_2 , $R_3 = H$, Cl, NO_2

Spectral interpretation of (1)

IR (v_{max}) (cm⁻¹): 3370 (OH, str), 3078 (NH₂, str), 1581 (C=N, str), 1680 (C=O, str), 1540 (-NO₂).

NMR (δ ppm): 12.52 (s, 1H, OH), 6.95-8.20 (m, 10H, Ar-H), 6.52 (s, 1H, =CH of pyrazole), 8.51 (s, 2H, -NH₂).

Spectral interpretation of (11)

IR (v_{max}) (cm⁻¹): 3375 (OH, str), 3090 (NH₂, str), 1573 (C=N, str), 1688 (C=O, str).

NMR (δ ppm): 12.60 (s, 1H, OH), 6.83-8.12 (m, 9H, Ar-H), 6.55 (s, 1H, =CH of pyrazole), 8.45 (s, 2H, -NH₂).

Compd.	R	R ₁	R ₂	R ₃	Melting point (°C)	% Yield	% Nitrogen		R _f
							Found	Calculated	Value
1	Н	Н	NO_2	Н	254	42	14.91	14.97	0.57
2	Η	NO_2	Н	Н	273	39	14.93	14.97	0.54
3	Н	Н	Н	NO_2	248	38	14.96	14.97	0.62
4	Η	Н	F	Н	263	36	12.43	12.46	0.62
5	Н	Cl	Н	Н	270	41	11.51	11.55	0.64
6	Н	Н	Н	Cl	254	35	11.49	11.55	0.52
7	Cl	Н	NO_2	Н	249	42	13.69	13.71	0.62
8	Cl	NO_2	Н	Н	255	40	13.63	13.71	0.51
9	Cl	Н	Н	NO_2	262	45	13.65	13.71	0.57
10	Cl	Н	F	Н	270	31	11.27	11.31	0.55
11	Cl	Cl	Η	Н	268	33	10.51	10.55	0.57
12	Cl	Н	Η	Cl	276	37	10.52	10.55	0.61

Table 1: Physical data of synthesized compounds

Antimicrobial studies

All above pyrazole derivatives have been studied for their antimicrobial activity against *Escherichia coli*, *Proteus mirabilis*, *Staphylococcus aureas*, *Pseudomonas aeruginosa*. The culture of each species was incubated at 37°C and the zone of inhibition was measured after 24 hr. Most of these compounds were found active

ACKNOWLEDGEMENT

The authors are thankful to Principal, Yashwantrao Chavan C.O.E., Nagpur (M.S.) for providing necessary laboratory facilities.

REFERENCES

1. V. Kumar, R. Aggarwal, P. Tyagi and S. P. Singh, Eur J Med Chem., 40(9), 922 (2005).

- 2. A. A. Bekhit, H. M. A. Ashour, Y. S. A. Ghany, A. E. D. A. Bekhit and A. Baraka, Eur. J. Med. Chem., **43**(3), 456 (2008).
- 3. S. A. F. Rostom, M. A. Shalaby and M. A. E. Demellawy, Eur. J. Med. Chem., **38**, 959 (2003).
- 4. S. Velaparthi, M. Brunsteiner, R. Uddin, B. Wan, S. G. Franzblau and P. A. Petukhov, J. Med. Chem., **51**, 1999 (2008).
- 5. A. M. Farag, A. S. Mayhoub, S. E. Barakat and A. H. Bayomi, Bioorg. Med. Chem., **16(2)**, 881 (2008).
- M. A. Chowdhury, K. R. A. Abdellatif, Y. Dong, G. Yu, Z. Huang, M. Rahman, D. Das, C. A. Velazquez, M. R. Suresh and E. Knaus, Bioorg. Med. Chem. Lett., 20(4), 13241 (2010).
- 7. J. C. Jung, E. B. Watkins and M. A. Avery, Heterocycles, 65, 77 (2005).
- 8. E. Palaska, M. Aytemir, T. Uzbay and D. Erol, Eur. J. Med. Chem., 5391 (2001).
- 9. E. Bansal, V. K. Srivastava and A. Kumar, Eur. J. Med. Chem., **36**, 811 (2001).
- 10. Y. V. Tamilovi, G. P. Oknonnishnikora, E. V. Shulishov and O. M. Nefedov, Russ. Chem. Bt., 44, 2114 (1995).
- 11. E. I. Klimova, M. Marcos, T. B. I. Klimova, A. T. Cecilio, A. T. Ruben and R. R. Lena, J. Orgnomet. Chem., **585**, 1061 (1999).
- 12. D. Bhaskarreddy, B. N. Chandrashekhar, V. Padmawati and R. D. Sumathi, Synthesis, 4911 (1999).

Revised : 07.02.2013

Accepted : 10.02.2013