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Introduction 

Imines which possesses the -CH=N-SO2- moiety and it is bonded with alkyl - aryl or aryl-aryl groups in both sides are known 

as tosylimines. The (E)-N-tosylimines are useful versatile intermediates for organic synthesis [1]. These (E)-N-tosylimine 

intermediates are used as excellent substrates in Diels-Alder reactions and it is called as Aza-Diels-Alder reaction [2]. In this 

Diels-Alder reactions this intermediates undergo nucleophilic additions [3,4], reductions [5], radical [6] and Baylis-Hillman 

[7,8]. Generally, these E-N-tosylimines were prepared by condensation of aldehydes and 4-methylbenzenesulfonamides or 

solfonyl chlorides using several methods such as conventional solvent assisted condensation [9,10], greener methods, like 

microwave assisted condensation [11], isomerization of N-tosylaziridines by palladium [12], tellurium metal assisted 

oxidation of chloramine-T [9], rearrangement of oxime O-sulfinates by in situ [1,14], reaction of N-trimethylsilylaldimine 

and solfonyl chlorides [15] and condensation of racemic sulfinylamides with carbonyl compounds followed by oxidation 

with haloperoxobenzoic acid [16]. For this condensation various catalyst have been utilized such as, TiCl4 [17], aq. HCOOH 

and Na2CO3 [18], Molecular sieves-amberlite [19], claymineral [20], zeolites [7], Lewis acid, protoic acids, base, metal 

oxides, AlCl3 [21], BF3-Et2O [22], sulfamic acid [23], P2O5/SiO2 [24], tetraethyl orthosilicate [25], silphox [26], zirconium 

sulphate-silica
 
[27], sulfated titania

 
[28], montmorillonite K-10 [29], zirconium oxide-persulfate [30], powdered zinc oxide 

[31], TFFA [32], InCl3 [10] and ionic liquids [33]. This (E)-N-tosylimines have been used for synthesis of many organics 
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such as triheteroarylmethanes [2], stereoselective heterocycles [1], co-ordination compounds [34], porphyrins [35], azetidine-

2-imines [36], pyrrolidines [37], multisubstituted imidazolidines [38], α,β-diamino acid derivatives [39], aziridines [40], 

chiral aziridines [41], (Z)-N-(1-bromo-1-alken-2-yl)-p-toluenesulfonamides [3], tosylamino alkyl naphthalenols [42], vinyl 

aziridines [43], 2-benzoyl fumarates and 1-aza dienes [44], complexes containing nitroamines
 [
45], arylgylcene derivatives 

[46], 2-alikylidenazetidines [47], chiral 1-aryl-1-ethylamines [48], heteroaromatic N-tosyl-α-amino acids [49], carboxylates 

[50], tosylhexahydropyrimidine-2-imines [51], β-aryl-β-amino acids [4], furyl sulphonamides [52], Baylis-Hillman adducts 

[7,8], imidazoles [11], and sulphonamide phosphonates [53]. Solvent free methods are very useful for synthesis of various 

organics [1,54-56]. Organic Chemists and researcher have paid more attention to green synthesis, due to the operational 

simplicity, lesser times, high yields, easy handling procedure and less hazardous to reaction and environment. The 

spectroscopic data is useful for analysis ground state molecular equilibration and configuration of organic molecules [57-60]. 

Also these findings were carried out via spectral correlations. The spectral group frequencies were correlated various 

substituent constants and F and R parameters gave the effects of the substituents on the group frequency of the corresponding 

molecule. This type of study was studied only in ketones, esters, imines, acyl halides, pyrazolines, unsaturated aldehydes, 

acids [61-66]and bicycle ketones [67]. With a view to above, there is no report available in the literature for solvent free 

synthesis and the study of effects of substituent on the group frequencies of some (E)-N-tosylimines by SiO2-H3PO4 catalyzed 

condensation of substituted benzaldehydes and 4-methyl sulphonamide. Therefore the authors have taken efforts to synthesis 

of some (E)-N-(substituted benzylidene)-4-methylbenzenesulfonamides and studied the spectral correlations on the specified 

group frequencies using Hammett correlation equation.  

 

Experimental 

Materials and Methods 

All chemicals used were purchased from Sigma-Aldrich and E-Merck chemical companies. Infrared spectra (KBr, 4000-

400cm
-1

) were recorded on AVATAR-300 Fourier transform spectrophotometer. The NMR spectra of all (E)-N-tosylimines 

were recorded in INSTRUM AV300 NMR spectrometer operating at 500MHz for 
1
H and 125.46MHz for 

13
C spectra in 

DMSO solvent using TMS as internal standard. Mass spectra were recorded on a SIMADZU GC-MS2010 Spectrometer 

using Electron Impact (EI) techniques.  

 

Synthesis of SiO2-H3PO4 catalyst 

The SiO2-H3PO4 catalyst was prepared by procedure published in literature [54]. 

 

Synthesis of (E)-N-(substituted benzylidene)-4-methylbenzenesulfonamides 

To an appropriate mixture of substituted benzaldehydes (2 mmol), 4-methylbenzene sulphonamide (2mmol) and 0.5g of 

SiO2-H3PO4 were taken in 50 mL glass beaker and covered with lid. This mixture was subjected to microwave heating for 5-8 

minutes at 650W(Samsung GW73BD microwave oven, 100-750W, 230V A/C, 2450MHz). The completion of the reaction 

was monitored by thin layer chromatography. After completion of reaction, dichloromethane (20 mL) was added, followed 

by simple filtration. The pure product was obtained by the evaporation of dichloromethane and recrystallization with ethanol. 

The yields of the (E)-N-tosylimines are more than 90%. The purities of these E-N-tosylimines were persuaded by their 

physical constants, IR, 
1
H, 

13
C NMR and Mass spectral data. Analytical and mass spectral data are presented in TABLE 1.  
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Scheme 1: Synthesis of substituted (E)-N-(substituted benzylidene)-4-methyl benzenesulfonamides. 

 

 

Entry X M.F. M.W. Yield 

(%) 

m.p. 

(°C) 

Mass (m/z) 

1 H C14H13NO2S 259 96 106-107(105-108) [33] 259 [M+]  

2 3-Br C14H12BrNO2S 339 91 117-118 339 [M
+
], 341 [M

+2
]  

3 4-Br C14H12BrNO2S 339 93 198-199(200-204) [33] 339 [M
+
], 341 [M

+2
]  

4 2-Cl C14H12ClNO2S 293 92 131-132(130-132) [33] 293 [M
+
], 295 [M

+2
]  

5 4-Cl C14H12ClNO2S 293 91 173-174(174-176) [33] 293 [M
+
], 295 [M

+2
]  

6 2-F C14H12FNO2S 277 90 121-122(120-125) [33] 277 [M
+
], 279 [M

+2
]  

7 4-OCH3 C15H15NO3S 289 95 125-126(124-128) [33] 289 [M
+
] 

8 4-CH3 C15H15NO2S 273 94 117-118(116-118) [33] 273 [M
+
] 

9 4-NO2 C14H12N2O4S 290 92 113-114(162-170) [33] 290 [M
+
] 

 

Table 1: Analytical, Physical constants and mass fragment data of (E)-N-(substituted benzylidene)-4-

methylbenzenesulfonamides. 

 

 

Results and Discussion 

Spectral linearity 

In the present study the Hammett spectral linearity of these synthesised E-N-tosylimines has been studied by evaluating the 

substituent effects [60-65]
 
on the group frequencies. The assigned spectroscopic data of all (E)-N-tosylimines such as 

absorption infrared carbonyl stretches of νC=N and νS=O, (cm
-1

), NMR chemical shifts δ (ppm) of CH, CH , and C=N have 

been assigned and these data are correlated with various substituent constants. 

 

IR spectral study 

The assigned C=N and S=O frequencies (cm
-1

) of synthesised (E)-N-tosylimines of present study are tabulated in TABLE 2. 

These data have been correlated with Hammett substituent constants [55-67] and Swain-Lupton constants [68] and are 

presented in TABLE 3. In this correlation the structure parameter Hammett equation employed is as shown in the following 

equation: 

ν = ρσ + ν0     … (1) 
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Where ν is the carbonyl frequencies of substituted system and ν0 is the corresponding quantity of unsubstitued system; σ is a 

Hammett substituent constant, which in principle is characteristics of the substituent and ρ is a reaction constant which is 

depend upon the nature of the reaction. 

 

Entry X IR 
1
H

 13
C

 

νC=N νS=O δC-H δCH3 δC=N δCH3 

1 H 1657.34 1062.58 8.202 2.416 169.85 23.65 

2 3-Br 1657.68 1064.46 8.702 2.716 170.51 24.63 

3 4-Br 1658.24 1064.34 8.522 2.733 171.63 24.61 

4 2-Cl 1658.44 1063.22 8.401 2.462 172.35 24.01 

5 4-Cl 1658.92 1062.45 8.302 2.402 170.65 24.06 

6 2-F 1658.73 1062.66 8.491 2.315 169.58 24.38 

7 4-OCH3 1658.02 1061.02 8.011 2.350 175.12 23.08 

8 4-CH3 1658.22 1061.21 8.122 2.371 176.65 23.16 

9 4-NO2 1659.23 1065.95 8.975 2.932 172.87 24.92 

 

Table 2: Infrared stretches(ν, cm
-1

) and NMR chemical shifts(δ, ppm) of (E)-N-(substituted benzylidene)-4-

methylbenzenesulfonamides. 

 

The results of single parameter statistical analysis of νC=N stretches with Hammett σ σ
+
 and σI, substituent constants and R 

parameters gave satisfactory correlations excluding H, 3-Br, and 4-CH3 substituents. If these substituents were included in the 

correlation, the correlations were reduced significantly. The resonance effect components of the substituents were fail in 

correlation. All correlations gave positive ρ values. This may mean that the normal substituent effect operates in all (E)-N-

tosylimines. The σR constants and R parameters were fail in correlations. This is due to the inability of substituents for 

prediction of the reactivity on the C=N stretches and associate with conjugation between the substituent and the C=N group 

in all E-N-tosylimines as shown in Figure 1.  
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Figure 1: The resonance –conjugative structure. 
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Frequency Constants r I ρ s n Correlated derivatives 

νC=N(cm
-1

) σ 0.905 1658.12 1.037 0.53 7 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σ
+
 0.904 1658.21 0.557 0.56 7 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σI 0.906 1657.72 1.642 0.48 8 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-NO2 

 σR 0.803 1658.33 0.120 0.63 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 F 0.906 1657.70 1.600 0.47 8 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-NO2 

 R 0.705 1658.34 0.141 0.63 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

νS=O(cm
-1

) σ 0.971 1062.70 4.055 1.31 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σ
+
 0.908 1062.98 2.519 1.37 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σI 0.903 1062.58 2.331 1.80 7 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-NO2 

 σR 0.907 1064.57 6.476 1.34 7 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-NO2 

 F 0.901 1062.89 1.414 1.85 6 3-Br, 4-Br, 2-Cl, 4-Cl, 4-OCH , 4-NO2 

 R 0.907 1064.68 5.433 1.33 7 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 4-OCH , 4-NO2 

δCH(ppm) σ 0.962 8.551 0.584 0.24 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σ
+
 0.962 8.591 0.377 0.24 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σI 0.901 8.591 0.195 0.30 7 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-NO2 

 σR 0.906 8.847 1.050 0.22 6 3-Br, 4-Br, 2-Cl, 4-Cl, 4-OCH , 4-NO2 

 F 0.812 8.605 0.148 0.31 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 R 0.869 8.863 0.873 0.42 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

δCH3(ppm) σ 0.907 2.243 0.548 0.13 7 H, 3-Br, 4-Br, 2-Cl, 4-OCH , 4-CH , 4-NO2 

 σ
+
 0.906 2.475 0.278 0.17 7 H, 3-Br, 4-Br, 2-Cl, 4-OCH , 4-CH , 4-NO2 

 σI 0.850 2.336 0.513 0.19 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σR 0.917 2.675 0.750 0.17 7 H, 4-Br, 2-Cl, 4-Cl, 2-F, 4-CH , 4-NO2 

 F 0.838 2.394 0.334 0.21 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 R 0.906 2.653 0.573 0.18 7 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 4-CH , 4-NO2 

δC=N(ppm) σ 0.843 172.74 -3.312 2.32 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σ
+
 0.853 172.65 -2.909 2.09 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σI 0.831 173.55 -3.921 2.38 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σR 0.803 172.20 0.391 2.51 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 F 0.904 173.63 -3.945 2.35 8 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 R 0.803 172.05 -0.358 2.25 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

δCH3(ppm) σ 0.931 23.70 1.933 0.25 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σ
+
 0.922 23.83 1.244 0.26 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σI 0.900 23.24 2.250 0.28 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 σR 0.831 24.24 1.076 0.66 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 F 0.907 23.30 1.986 0.45 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

 R 0.803 24.26 0.893 0.66 9 H, 3-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-OCH , 4-CH , 4-NO2 

r= correlation coefficient; I= intercept; ρ=slope; s=standard deviation; n= number of correlated derivatives 
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Table 3: Results of statistical analysis of infrared absorptions (ν, cm
-1

) and NMR chemical shifts (δ, ppm) of 

(E)-N-tosylimines with Hammett σ, σ
+
, σI, σR and F and R parameters. 

 

The correlation of νC=S stretches with Hammett substituent constants, F and R parameters gave satisfactory r values [σ 

(r=0.906), σ
+
(r=0.906), σI(r=0.903), σR(r=0.907), F (0.901) and R(0.907)] excluding H, 2-F and 4-CH3 substituents. If these 

substituents were included in the correlation, the correlations were reduced significantly. All correlations gave positive ρ 

values and it is evident for the normal substituent effects operates in all systems. The failure in correlation is due the 

conjugation between the substituent and the C=S group in all (E)-N-tosylimines as shown in Figure 1.  

 

In view of the inability of some of the  constants to produce individually satisfactory correlations, it was thought that 

worthwhile to seek multiple correlations involving either 
I 
and 

R
 constants or Swain-Lupton’s [68]

 
F and R parameters. 

The correlation equations for νC=N and νC=S are given in equations (2-5).  

νC=N(cm
-1

)
 
= 1657.75(±0.364)+1.651(±0.771)σI+0.222(±0.092)σR  …(2) 

    (R =0.965, n=9, P>95%) 

νC=N(cm
-1

)
 
= 1657.78(±0.321)+1.725(±0.703)F+0.577(±0.075)R  …(3) 

   (R = 0.970, n=9, P>95%) 

νC=S(cm
-1

)
 
= 1063.66(±0.882)+2.613(±1.887)σI+6.638(±2.304)σR  …(4) 

    (R =0.978, n=9, P>95%) 

νC=S(cm
-1

)
 
= 1063.79(±0.861)+2.736(±1.757)F+6.125(±1.897)R  …(5) 

   (R = 0.980, n=9, P>95%) 

 

1
H NMR spectral study 

Deuterated dimethylsulphoxie was used for recording the 
1
H NMR spectra of synthesized (E)-N-tosylimines employing 

tetramethylsilane (TMS) as internal standard. The CH and CH3 proton signals of the (E)-N-tosylimines were obtained as a 

singlet and assigned from their spectra. The assigned CH and CH3 proton chemical shifts δ(ppm) of all (E)-N-tosylimines 

were presented in TABLE 2. 

In nuclear magnetic resonance spectra, the proton or the 
13

C chemical shifts (δ) depends on the electronic environment of the 

nuclei concerned. The assigned vinyl proton chemical shifts (ppm) have been correlated with reactivity parameters using 

Hammett equation in the form of  

 Log δ = Log δ0 + ρσ       … (6)  

where δ0 is the chemical shift of unsubstitued ketones. 

 

The assigned CH proton chemical shifts (ppm) were correlated with Hammett σ constants and F and R parameters [54-67]. 

The results of statistical analysis [54-67]
 
are presented in TABLE 3. The obtained correlations were satisfactory for CH 

chemical shifts with Hammett σ substituents excluding H, 2-F and 4-CH3 substituents. When these substituents were included 

in the correlations, they reduced the r values significantly. The F and R parameters gave poor correlation. All correlation gave 

positive ρ values and it is evident for the normal substituent effectsoperates in all correlations. The failure in correlation was 

due to the weak and incapable of resonance and field effects of substituents for prediction of the effects on the CH chemical 

shifts in all systems and it is associated with the resonance-conjugates structure shown in Figure 1.  
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The assigned CH3 proton chemical shifts (ppm) were correlated with Hammett σ constants and F and R parameters [54-67]. 

The results of statistical analysis [54-67]
 
are presented in Table 3. The obtained correlations were satisfactory for CH3 

chemical shifts with Hammett σ, σ+, σR constants and R parameters excluding H, 2-F and 4-CH3 substituents. When these 

substituents were included in the correlations, they reduced the r values significantly. The σI and F parameters gave poor 

correlation. All correlation gave positive ρ values and it is evident for the normal substituent effect operates in all 

correlations. The failure in correlation was due to the weak and incapable of inductive and field effects of substituents for 

prediction of the effects on the CH3 chemical shifts in all systems and it is associated with the resonance-conjugates structure 

shown in Figure 1.  

 

Application of Swain-Lupton’s [68] treatment to the relative chemical shifts (δ,ppm) of CH and CH3 with F and R values is 

successful with resonance, inductive effect generates the multi regression equations (7-10).  

δCH 
(ppm)

= 8.763( ±0.164)+0.239(±0.035)σI + 1.065( ±0.429) σR  …(7) 

  (R = 0.97 , n=9, P>95%) 

δCH 
(ppm)

= 8. 747(±0.149) +0.356(±0.032) F + 0.964(±0.034) R  …(8) 

  (R = 0.975, n=9, P>95%) 

δCH3 
(ppm)

= 2.463( ±0.076)+0.548(±0.164)σI + 0.784( ±0.200) σR  …(9) 

  (R = 0.989, n=9, P>95%) 

δCH3 
(ppm)

= 2.497(±0.095) +0.485(±0.204) F + 0.696(±0.220) R  …(10) 

  (R = 0.98 , n=9, P>95%) 

 

13
C NMR spectral study 

Physical organic chemists, researchers, organic chemists, spectral analysts, and scientists [54-67]
 
have made extensive study 

of 
13

C NMR spectral correlations of ketones, enones, acyl chlorides, bromides, esters, imines, pyrazolines and styrenes. The 

assigned C=N and CH3 carbon chemical shifts(δ, ppm) are presented in TABLE 2. The results of statistical analysis are given 

IN TABLE 3. The C=N chemical shifts (δ, ppm) gave satisfactory correlation with R parameters. The Hammett substituent 

constants and F parameters were fail in correlations. Most of the correlations produced negative ρ values. This means that the 

reserved substituent effect operates in all correlations. This is due to reasons stated earlier with the resonance conjugative 

structure shown in Figure 1.  

 

The results of statistical analysis of CH3 chemical shifts(δ, ppm) of synthesized tosylimines with Hammett substituent 

constants, R and R parameters were presented in Table 3. The CH3 chemical shifts (δ, ppm) gave satisfactory correlation with 

Hammett σ, σ
+
, σI and F parameters. The Hammett σR constant and R parameters were fail in correlations. All correlations 

gave positive ρ values. This means that the normal substituent effect operates in all systems. The failure in correlation is due 

to the reasons stated earlier and it is associated with the resonance conjugative structure shown in Figure 1.  

 

 The Swain Lupton’s [68] parameter correlations of C=N and CH3 carbon chemical shifts(δ, ppm) were satisfactorily and the 

generated regression equations are given in (9-12). 

δC=N
(ppm)

=173.57(±1.802) - 3.915( ±0.385)σI +0.151( ±0.041)σR  …(9) 

  (R = 0.938, n=9, P>95%) 
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δC=N
(ppm) 

=173.42( ±1.692)-4.255(±0.364)F–1.433(±0.319)R   …(10) 

  (R = 0.94 , n=9, P>90%) 

δCH3
 (ppm)

=23.43(±0.238) + 2.301( ±0.509)σI +1.219( ±0.622)σR  …(11) 

  (R = 0.938, n=9, P>95%) 

δCH3
 (ppm) 

=23.51( ±0.201)+2.301(±0.413)F+1.474(±0.467)R   …(12) 

  (R = 0.99 , n=9, P>90%) 

 

Conclusions 

We have synthesised more than 90% yields of some (E)-N-tosylimines using SiO2-H3PO4 acid catalyst by solvent free 

condensation of 4-mehylbenzensulfonamide and substituted benzaldehydes under microwave irradiation. The effects of 

substituent on the group frequencies (ν, cm
-1

) such as C=N, S=O and the chemical shifts(δ, ppm) of CH,CH3 and C=N of all 

the (E)-N-tosylimines have been studied. Most of the single and multi-regressions produced satisfactory correlations. 
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