Synthesis and spectral characterization of some new 2-(substituted)-5-methyl/chloro-2,3-dihydro-1,3,2 λ^{5} -benzoxazaphosphol-2 -thiones / -2- ones

N.Suresh ${ }^{1}$, C.Venkateswarlu ${ }^{1}$, K.Sri Devi ${ }^{2}$, C.V.Nageswara Ran ${ }^{2 *}$, G.S.Sastry ${ }^{3}$, C.Sampath ${ }^{4}$
${ }^{1}$ Department of Chemistry, K V R College, Nandigama - 521 185, A.P., (INDIA)
${ }^{2}$ P G Department of Chemistry, A G \& SG Siddhartha College of Arts \& Science, Vuyyuru - 521 165, A.P., (INDIA)
${ }^{3}$ Department of Chemistry, Andhra Loyola College, Vijayawada - 520 008, A.P., (INDIA)
${ }^{4}$ Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, A.P., (INDIA)
E-mail: chavavnrao@gmail.com
Received: $28^{\text {th }}$ April, 2011 ; Accepted: $28^{\text {th }}$ May, 2011

ABSTRACT

Synthesis of 2-(substituted)-5-methyl / 5-chloro2,3-dihydro-1,3,2ג5-benzoxaza- phosphol-2-thiones / 2 - ones was accomplished in a two - step process. The structures of these compounds was confirmed by analytical and spectral data (IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR and Mass).
© 2012 Trade Science Inc. - INDIA

KEYWORDS

4-methyl-2-aminophenol; 4-chloro-2-aminophenol; Thiophosphoryl chloride; Phosphoryl chloride; Phenols; Aromatic amines.

INTRODUCTION

Organophosphorus compounds being ubiquitous in nature, found multifaceted applications ${ }^{[1,2]}$. Organophosphorus esters are commercial pesticides ${ }^{[2]}$ and insecticides ${ }^{[3-6]}$. Cyclophosphamide is a well known anticancer agent ${ }^{[7]}$. This background provided great impetus for a systematic research in the synthesis of new organophosphorus heterocycles containing O, N, and S with potential bio-activity.

Organic compounds containing two same or different facile groups such as $-\mathrm{NH}_{2},-\mathrm{OH},-\mathrm{SH}$ were largely used as substrates in the synthesis of organophosphorus heterocycles. Reagents like phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, their alkyl / aryl derivatives and alkyl / aryl phosphites were used for cyclocondensation, in the preparation of intermediates and final products.

Koizumi et al. ${ }^{[8]}$ reported the formation of 2-phenoxy 3, 4-dihydro-1H-1,3,2-benzoxazaphophole2 -oxides by reacting 2 -amino phenol with phenyl phosphoro dichloridates.

Syam Prasad et al. ${ }^{[9]}$ reported the synthesis of $5-$ substituted-2-(methoxy phenyl)-3H-benzo[1,3,2]oxaza phosphole-2-sulfides by the condensation of 4chloro/methyl amino phenol with Lawesson's reagent. Zimmer and Sill ${ }^{[10]}$ prepared the pyridine analog of Benzodiazophosphole -2 - oxide and this compound also proved to be an effective anti-cancer agent. Venkateswarlu et al. ${ }^{[11]}$ reported the synthesis of 2-(substituted)-1, 3, $2 \lambda^{5}$-oxazaphosphinan-2-ones/-2thiones from 3-aminopropanol.

Organo phosphorus cyclic compounds with oxygen, sulfur or nitrogen in the ring system are expected to be more active due to the presence of hetero atoms. In view of this applicability, synthesis of new 2 -substi-

Fula Papro

tuted-5-methyl / 5 - chloro-2, 3-dihydro-1, 3, $2 \lambda^{5}$ -benzoxazaphosphol-2-thiones /-2 - ones was accomplished with good to moderate yields.

EXPERIMENTAL

Melting points were determined in open capillary tubes on a Mel-Temp apparatus and were uncorrected. IR spectra were recorded in KBr pellets on a PerkinElmer FT-IR 1000 spectrophotometer. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31}$ P NMR spectra were taken on Bruker ACF NMR spectrophotometer operating at $400 \mathrm{MHz}, 100 \mathrm{MHz}$ and 161.89 MHz respectively, in CDCl_{3} and were referenced to TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. Mass spectral data were collected on LCMS - 2010A, Shimadzu Spectrometer.

Synthesis of 5-methyl-2-(2-toluidino)-2,3-dihydro $-1,3,2, \lambda^{5}$-benzoxazaphosphol-2-thione (6)

Phosphoryl chloride ($0.31 \mathrm{~g}, 0.002$ mole) in 20 mL of benzene was added drop wise over a period of 20 minutes to a stirred solution of 4-methyl-2-aminophenol ($0.245 \mathrm{~g}, 0.002$ mole) and TEA ($0.404 \mathrm{~g}, 0.004$ mole) in 30 mL of dry benzene at $0^{\circ} \mathrm{C}$. After the addition, the temperature of the reaction was raised to $45-55^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 4 hours. Completion of the reaction was monitored by TLC analysis (hexane and ethyl acetate 3:1). After cooling the reaction mixture, 2-methyl aniline ($0.201 \mathrm{~g}, 0.002$ mole), TEA ($0.201 \mathrm{~g}, 0.002$ mole) were added at $20^{\circ} \mathrm{C}$ in situ and raised the temperature to $45-55^{\circ} \mathrm{C}$. Stirring of the reaction mixture was continued for 4 hours. Completion of the reaction was monitored by TLC (hexane and ethyl acetate $3: 1$). The precipitated triethylamine hydrochloride was removed by filtration and the solvent was removed from the filtrate in a rota-evaporator. The residue was purified by column chromatography on silica gel (60-120 mesh) as adsorbent using hexane and ethyl acetate ($2: 1$) as an eluent to afford the analytically pure 5-methyl - 2 - (2-toluidino) - 2, 3-dihydro-1,3,2 λ^{5} -benzoxazaphosphol-2-one (6). All other compounds are prepared by following the same procedure.

RESULTS AND DISCUSSION

A simple two-step procedure, for the synthesis
of 2-substituted bezoxazaphosphol-2-thiones/-2ones with moderate yields has been employed. Synthesis of the title compounds (3-12) was accomplished in a two - step process. The synthetic route involves the condensation of 4-methyl-2-aminophenol / 4-chloro-2-aminophenol (1) with thiophosphoryl chloride / phosphoryl chloride in dry benzene in the presence of triethylamine (TEA) at $45-55^{\circ} \mathrm{C}$ with the continuous stirring of the reaction mixture for 4-6 hours to afford the corresponding intermediate 2 chloro -5 - methyl - 2,3-dihydro-1,3,2 λ^{5} -benzoxazaphosphol-2-thione / 2 -chloro- 5 -chloro 2 , 3 dihydro $-1,3,2 \lambda^{5}$ - benzoxaza phosphol -2one (2). The progress of the reaction was followed by TLC (hexane - ethyl acetate, 3:1).

In the second step, the intermediate compound (2) was reacted in situ with various phenols and aromatic amines, in dry benzene in the presence of TEA to obtain the title compounds (3-12) in moderate yields. The triethylamine hydrochloride formed in the reaction being insoluble in benzene was separated by filtration. The second step of the reaction was completed at $45-55^{\circ} \mathrm{C}$ by continuous stirring of the reaction mixture for 3-5 hours. The progress of the reaction was followed by TLC (hexane - ethyl acetate, 3:1). The crude products obtained after removing the solvent, from the filtrate by rota-evavoparator, were purified by column chromatography on silica gel (hex-ane-ethyl acetate, 7:3). All the title compounds were readily soluble in polar solvents and melted in the range of $135-162^{\circ} \mathrm{C}(\mathbf{3 - 8})$ and $214-226^{\circ} \mathrm{C}(\mathbf{9 - 1 2})$. Their yields were in the range of $50-81 \%$.

The synthetic and analytical data of compounds (3-12) are given in the TABLE 1. The IR data and ${ }^{31} \mathrm{P}$ NMR data are presented in TABLE 2 . The compounds (3-12) exhibited stretching frequencies in the regions 709-772 ($\mathrm{P}=\mathrm{S}$), 1227-1233 ($\mathrm{P}=\mathrm{O}$), 33613470 (N-H) and 940-1022, 1160-1219 $\mathrm{cm}^{-1}(\mathrm{P}-$ $\mathrm{O}-\mathrm{C}_{(\text {aromatic })}{ }^{[12]}$.

The proton NMR spectral data of the compounds are furnished in the TABLE 3. The aromatic protons showed a complex multiplet in the region $\delta 6.3-7.5$ ppm. C-5-CH3 proton signal appeared as singlet in the range of $\delta 2.11-2.32$. Ar-NH ${ }_{\text {(endocyclic) }}$ proton resonated in the region of $\delta 5.45-5.69 \mathrm{ppm}$ as a doublet with J a value $\approx 20 \mathrm{~Hz}$ due to its coupling with the

Scheme 1

TABLE 1 : Physical and analytical data of the compounds (3-12)

Comp.	$\underset{{ }_{\mathbf{0}} \mathrm{C}}{\mathrm{~m} . \mathrm{p}}$	Yield(\%)	Molecular Formula	Elemental Analysis Fouund (Calcd.) \%		
				C	H	N
3	135-137	67	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{PSO}_{2}$	$\begin{gathered} 58.65 \\ (58.53) \end{gathered}$	$\begin{gathered} 3.89 \\ (3.96) \end{gathered}$	$\begin{gathered} 8.46 \\ (8.53) \end{gathered}$
4	138-140	69	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NPSO}_{2}$	$\begin{gathered} 57.82 \\ (57.73) \end{gathered}$	$\begin{gathered} 4.76 \\ (4.81) \end{gathered}$	$\begin{gathered} 4.87 \\ (4.81) \end{gathered}$
5	146-148	81	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NPSO}_{2}$	$\begin{gathered} 62.41 \\ (62.38) \end{gathered}$	$\begin{gathered} 4.22 \\ (4.28) \end{gathered}$	$\begin{gathered} 4.19 \\ (4.28) \end{gathered}$
6	152-154	72	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{PSO}$	$\begin{gathered} 57.85 \\ (57.93) \end{gathered}$	$\begin{gathered} 5.21 \\ (5.17) \end{gathered}$	$\begin{gathered} 9.72 \\ (9.65) \end{gathered}$
7	156-158	64	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{PSO}_{3}$	$\begin{gathered} 48.63 \\ (48.59) \end{gathered}$	$\begin{gathered} 3.69 \\ (3.73) \end{gathered}$	$\begin{gathered} 13.12 \\ (13.08) \end{gathered}$
8	$160=162$	58	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{PSO}$	$\begin{gathered} 62.57 \\ (62.57) \end{gathered}$	$\begin{gathered} 4.57 \\ (4.60) \end{gathered}$	$\begin{gathered} 8.62 \\ (8.58) \end{gathered}$
9	214-216	50	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NPClO}_{3}$	$\begin{gathered} 51.06 \\ (51.15) \end{gathered}$	$\begin{gathered} 3.24 \\ (3.19) \end{gathered}$	$\begin{gathered} 4.88 \\ (4.97) \end{gathered}$
10	218-220	54	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NPClO}_{3}$	$\begin{gathered} 52.79 \\ (52.79) \end{gathered}$	$\begin{gathered} 3.72 \\ (3.72) \end{gathered}$	$\begin{gathered} 4.67 \\ (4.73) \end{gathered}$
11	218-220	55	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NPClO}_{3}$	$\begin{gathered} 52.79 \\ (52.79) \end{gathered}$	$\begin{gathered} 3.72 \\ (3.74) \end{gathered}$	$\begin{gathered} 4.67 \\ (4.76) \end{gathered}$
12	224-226	50	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NPClO}_{3}$	$\begin{array}{r} 45.54 \\ (45.57) \end{array}$	$\begin{array}{r} 2.55 \\ (2.53) \\ \hline \end{array}$	$\begin{gathered} 4.35 \\ (4.43) \end{gathered}$

neighbouring phosphorus ${ }^{[13]}$. Ar-NH (exocyclic) proton of $6,7,8$ resonated as doublet in the region of $\delta 6.29$ 8.07 ppm with a J value in the range of $8.0-9.2 \mathrm{~Hz}$.

TABLE 2: IR and ${ }^{31}$ PNMR data for the compounds (3-12)

Comp.	I R Frequencies in cm^{-1}					$\begin{aligned} & { }^{31} \mathbf{P N M R}^{\mathrm{a}} \\ & \mathrm{ppm} \delta \end{aligned}$
	$\mathrm{P}=\mathrm{S}$	$\mathbf{P}=0$	-NH	P-O-C ${ }_{\text {(aromatic) }}$		
				P-O	O-C	
3	709		3411	940	1160	67.37
4	751	-	3470	962	1202	59.62
5	769		3394	980	1194	66.56
6	772		3372	1022	1219	62.15
7	750		3361	994	1178	64.42
8	762	-	3422	998	1192	61.79
9	-	1227	3418	955	1206	-41.5
10	-	1233	3413	955	1214	-41.5
11	-	1229	3415	951	1 1206	-41.5
12	-	1229	3414	956	1210	-41.5
$\mathrm{a}=\mathbf{8 5 \%} \mathrm{H}_{3} \mathrm{PO}_{4}$ external standard						
These amidic protons presence were confirmed by a $\mathrm{D}_{2} \mathrm{O}$ exchange experiments. The ${ }^{13} \mathrm{C}$ NMR spectral data of these compounds						

TABLE 3 : ${ }^{1} \mathrm{H}$ NMR spectral data ${ }^{\text {a,b }}$ of compounds (3-12)

Comp.	Ar-H	$\mathrm{C}-5-\mathrm{CH}_{3}$	$\begin{gathered} \text { Ar-NH } \\ \text { (endocyclic) } \end{gathered}$	$\begin{gathered} \text { Ar-NH } \\ \text { (exocyclic) } \end{gathered}$
3	$\begin{gathered} 6.44-7.49 \\ (\mathrm{~m}, 9 \mathrm{H}) \end{gathered}$	$\begin{gathered} 2.11 \\ (\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 5.56 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	-
4	$\begin{gathered} 6.38-7.23 \\ (\mathrm{~m}, 7 \mathrm{H}) \end{gathered}$	$\begin{gathered} 2.17 \\ (\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 5.64 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	-
5	$\begin{aligned} & 6.47-7.31 \\ & (\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$	$\begin{gathered} 2.24 \\ (\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 5.69 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	-
6	$\begin{gathered} 6.34-7.32 \\ (\mathrm{~m}, 7 \mathrm{H}) \end{gathered}$	$\begin{gathered} 2.26 \\ (\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 5.67 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.29 \\ (\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}) \end{gathered}$
7	$\begin{gathered} 6.43-7.23 \\ (\mathrm{~m}, 7 \mathrm{H}) \end{gathered}$	$\begin{gathered} 2.17 \\ (\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 5.45 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 8.07 \\ (\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}) \end{gathered}$
8	$\begin{aligned} & 6.39-7.27 \\ & (\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$	$\begin{gathered} 2.32 \\ (\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 5.54 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 8.0 \\ (\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}) \end{gathered}$
9	$\begin{gathered} 6.5-7.1 \\ (\mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 5.6 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	-
10	$\begin{gathered} 6.5-7.1 \\ (\mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 5.6 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	-
11	$\begin{gathered} 6.5-7.0 \\ (\mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 5.6 \\ (\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}) \end{gathered}$	-
12	$\begin{gathered} 6.5-7.5 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	-	$\begin{gathered} 5.6 \\ (\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}) \\ \hline \end{gathered}$	-

$\mathbf{a}=\mathbf{T M S}$ as internal standard $\mathbf{b}=\mathbf{p p m} \delta$
and model compounds. The oxygen attached carbon (7a) is resonated as a doublet in the region δ 141.20-143.86 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\text {P-O-C }}=10 \mathrm{~Hz}$) and C-3a gave a doublet in the range $\delta 130.1-131.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{N}-}\right.$ ${ }_{c} \approx 10 \mathrm{~Hz}$). The down field signal of $\mathrm{C}-7 \mathrm{a}$ is due to ortho effect of oxygen atom. Nitrogen attached carbon (3a) is also deshielded and resonated in the range $\delta 130.1-131.3$ as a doublet $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{O}-\mathrm{C}} /{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{N}-\mathrm{C}}=2-\right.$ 4 Hz), $\mathrm{C}-1^{\prime}$ is resonated as a doublet due to coupling with phosphorus in the region of $\delta 115.0-121.05$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{O}-\mathrm{C}}=5 \mathrm{~Hz}\right)$. The remaining carbons are resonated in the expected region. ${ }^{31} \mathrm{P}$ NMR spectral data for all the title compounds are given in TABLE $2 .{ }^{31} \mathrm{P}$ NMR chemical shifts of these compounds appeared in the region $59.62-67.37 \mathrm{ppm}$ for compounds (38) and for compounds (9-12) with a value -41.5 $\mathrm{ppm}^{[14]}$. The LCMS data of compounds (6-12) are presented in the TABLE 5.

TABLE 4: ${ }^{13} \mathrm{C}$ NMR spectral data ${ }^{\text {a }}$ of compounds (3-12)

Comp.	Chemical Shifts in $\delta \mathbf{p p m}$
3	$\begin{aligned} & 115.5(\mathrm{C}-4), 121.7(\mathrm{C}-5), 127.7(\mathrm{C}-6), 115.5(\mathrm{C}-7), 142.4(\mathrm{C}-7 \mathrm{a}), 130.4(\mathrm{C}-3 \mathrm{a}), 20.6\left(\mathrm{C}-5-\mathrm{CH}_{3}\right), 152.3(\mathrm{C}-1 \text {), } 110.1 \\ & (\mathrm{C}-2 ?), 127.7(\mathrm{C}-37), 120.4(\mathrm{C}-4 \text { ? }), 147.8(\mathrm{C}-5 \text {), } 118(\mathrm{C}-6), 128.5(\mathrm{C}-7), 117.8(\mathrm{C}-8), 142.4(\mathrm{C}-9 \text { ? }) \end{aligned}$
4	116.0 (C-4), 120.3 (C-5), 127.8 (C-6), 116.0 (C-7), 141.8 (C-7a), 130.2 (C-3a), $20.4\left(\mathrm{C}-5-\mathrm{CH}_{3}\right), 146.2(\mathrm{C}-1$), 116.3 (C-2?, 129.6 (C-3), 120.6 (C-4), 134.4 (C-5), 122.7 (C-6).
5	116.4 (C-4), 119.2 (C-5), 129.3 (C-6), 115.2 (C-7), 141.8 (C-7a), 130.6 (C-3a), $20.8\left(\mathrm{C}-5-\mathrm{CH}_{3}\right), 110.6$ (C-1 7), 152.3 (C-2?, 116.6 (C-3), 129.8 (C-4), 127.4 (C-5), 122.6 (C-6), 125.8 (C-7?), 126.0 (C-8), 133.7 (C-9?), 129.7 (C-10?)
6	115.0 (C-4), 119.8 (C-5), 130.7 (C-6), 115.0 (C-7), 141.9 (C-7a), 130.7 (C-3a), $20.6\left(\mathrm{C}-5-\mathrm{CH}_{3}\right), 141.9$ (C-1), 115.0 (C-2?, 119.8 (C-3), 117.7 (C-4), 130.7 (C-5), $119.8\left(\mathrm{C}-6\right.$), $18.6\left(\mathrm{C}-2 \mathrm{CH}_{3}\right)$
7	115.7 (C-4), 120.7 (C-5), 130.2 (C-6), 116.2 (C-7), 142.5 (C-7a), $130.9(\mathrm{C}-3 \mathrm{a}), 20.0\left(\mathrm{C}-5-\mathrm{CH}_{3}\right), 150.3(\mathrm{C}-1$), 129.6 $(\mathrm{C}-27 \mathrm{C}-6), 126.8$ (C-37 C-5), 118.3 (C-4?
8	116.6 (C-4), 120.2 (C-5), 129.03 (C-6), 116.3 (C-7), 141.2 (C-7a), 130.1 (C-3a), $20.3\left(\mathrm{C}-5-\mathrm{CH}_{3}\right), 141.0(\mathrm{C}-1$), 110.2 (C-2?, 126.9 (C-3), 118.1 (C-4), 127.8 (C-5), 126.8 (C-6), 124.3 (C-7), 120.7 (C-8), 123.8 (C-9?, 132.9 (C-10)
9	$\begin{aligned} & 120.68 \text { (C-4), } 124.06 \text { (C-5), } 129.28 \text { (C-6), } 110.54 \text { (C-7), } 143.81 \text { (C-7a), } 131.27 \text { (C-3a), } 143.84(\mathrm{C}-1 \text {), } 124.69(\mathrm{C}-2 \text {), } \\ & 131.06 \text { (C-3), } 125.27(\mathrm{C}-4 \text {), } 129.26(\mathrm{C}-5), 121.10(\mathrm{C}-6) \end{aligned}$
10	$\begin{aligned} & \text { 120.54(C-4), } 121.66(\mathrm{C}-5), 131.01(\mathrm{C}-6), 110.43(\mathrm{C}-7), 143.81(\mathrm{C}-7 \mathrm{a}), 131.22(\mathrm{C}-3 \mathrm{a}), 143.81(\mathrm{C}-1 \text {), } 125.14(\mathrm{C}-2 ? \text {, } \\ & 139.33(\mathrm{C}-3), 125.37\left(\mathrm{C}-4 \text {) }, 128.84(\mathrm{C}-5), 117.89(\mathrm{C}-6) \mathrm{CH}_{3} / \mathrm{CH} 2-(21.1)\right. \end{aligned}$
12	```121.05 (C-4), 125.04 (C-5), 131.06 (C-6), 110.51 (C-7), 143.86 (C-7a), 131.06 (C-3a), 148.94 (C-1'), 125.57 (C-2'), 131.27 (C-3'), 122.80 (C-4'), 129.25 (C-5'), 120.69 (C-6')```

$\mathbf{a}=\mathbf{T M S}$ as internal standard

TABLE 5 : Mass spectral data of compounds 3, 6-12

Compound	$\mathbf{m} / \mathbf{z}(\%)$
3	$331(\mathrm{M}+3,6), 330(\mathrm{M}+2,35), 329(\mathrm{M}+1,100), 282(7)$
6	$292(\mathrm{M}+2,15), 291(\mathrm{M}+1,100)$.
7	$322(\mathrm{M}+1,3), 321\left(\mathrm{M}^{+}, 100\right), 320(\mathrm{M}-1,2)$.
8	$326\left(\mathrm{M}^{+}, 100\right), 325(\mathrm{M}-1,3), 311(5), 282(2)$
9	$318(15), 317(10), 316(15), 315(20), 314(50), 313$
10	$(20), 312(100)$
$316(15), 315(10), 314(63), 313(14), 312(100)$	
11	$\left(\mathrm{M}^{+}+\mathrm{CH}_{3}\right)$
$1216(22), 314(72), 313(15), 312(100)$	
12	$316(10),\left(\mathrm{M}^{+}+1\right), 315(8)\left(\mathrm{M}^{+}\right), 314(52), 313(14)$,
	$312(100)$

REFERENCES

[1] D.L.Hill; 'A Review of Cyclophosphamide', Charles C. Thomas Springfield, IL, 111 (1975).
[2] C.Fest, K.J.Schmidt; 'The Chemistry of Organophosphorus Pesticides', Springer - Verlag, New York, 80 (1982).
[3] J.E.Casida, M.Eto, R.I.Baron; Nature, 191, 1396 (1961).
[4] M.Eto, J.E.Casida, T.Eto; Biochem.Pharmacol., 11, 337 (1962).
[5] M.Eto; Residue Reviews, 25, 187 (1969).
[6] M.Eto; Review of Plant Protection Research, 9, 1 (1976).
[7] H.Arnold, F.Bourseaux; Nature, 181, 131 (1958).
[8] T.Koizumi, Y.Watanbe, Y.Yoshida, Eyoshii; Tetr. Lett., 1075, (1974).
[9] G.Syam Prasad, B.Haribabu, C.S.Reddy, C.Naga Raju, C.D.Reddy; Synthetic Commun., 38, 85 (2008).
[10] H.Zimmer, A.Sill; Progr.Drug Res., 5, 150 (1964).
[11] C.Venkateswarlu, P.V.V.Satyanarayana, C.V.Nage-
swara Rao, C.Naga Raju; J.Indian.Chem.Soc., 87, 1273 (2010).
[12] L.C.Thomas, R.A.Chittenden; Spectrochim Acta, 20, 489 (1964).
[13] P.V.G.Reddy, Y.Hari Babu, C.Suresh Reddy, D.Srinivasulu; Heteroatom Chemistry, 13, 340 (2002).
[14] L.D.Quin, J.G.Verkade; ${ }^{31}$ P NMR Spectral Properties in Compound Characterization and Structural Analysis, VCH Publishers, New York, (1994).

