

SYNTHESIS AND ELECTRICAL CONDUCTIVITY STUDY OF LiGdP₂O₇ FAST IONIC CONDUCTOR

C. S. RAMYA^{*,a}, G. HIRANKUMAR^b and S. SELVASEKARAPANDIAN^c

^aDepartment of Physics, Agni College of Technology, CHENNAI – 603103 (T.N.) INDIA ^bDepartment of Physics, PSN College of Engineering and Technology, TIRUNELVELI – 627152 (T.N.) INDIA ^cMaterial Research Center, COIMBATORE – 641045 (T.N.) INDIA

ABSTRACT

The electrical conductivity of solid electrolyte LiGdP₂O₇ prepared by wet chemical method has been found to be 2×10^{-5} S cm⁻¹ at 400°C. The transport properties such as hopping frequency, charge carrier concentration have been studied. The activation energy for hopping (E_{ω}) is in good agreement with the bulk activation energy (E_{σ}) suggesting the independent nature of carrier concentration with temperature.

Key words: Rare earth phosphates, FTIR Analysis, Impedance spectroscopy, Transport parameters.

INTRODUCTION

Fast ion conductors characterized by their high ionic conductivity have attracted a great deal of attention because of their potential applications in solid state high energy density batteries, sensors and fuel cells¹⁻³. Mono and Double phosphates have received considerable attention in developing new ionic conducting material due to their tridimensional framework of $P_2O_7^{4-}$ polyhedra, which gives rising tunnels along the c direction⁴. The conductivity of the monovalent cation is higher than that of the divalent and trivalent ion due to its small atomic radius. Among the monovalent cationic conductors, alkali metal ions such as Na and Li were especially well known for their high ionic conduction in solid electrolytes. Among them, Li based systems are particularly attractive due to their high energy densities and high open circuit potentials. The present work explores the ion dynamics of LiGdP₂O₇ electrolyte using the analysis of frequency dependent conductivity obtained from complex impedance measurements.

^{*}Author for correspondence; E-mail: ramyacs@rediffmail.com

EXPERIMENTAL

Polycrystalline sample of LiGdP₂O₇ has been prepared by Wet Chemical method. LiOH.H₂O, Gd(NO₃)₃.6H₂O, (NH₄)₂HPO₄ are used as starting materials. The starting materials are dissolved in doubly distilled water separately and the solution are mixed and stirred well. Aqueous solutions of the raw materials were prepared separately by dissolving them in doubly distilled water. The solutions are mixed and stirred well. The observed snow white precipitate is filtered and dried at 100°C. The dried sample is ground and subjected to heat treatment at 650°C for 3 hrs in air. The resultant sample is crushed into powder and spread in a die. The pellets with 1.0 cm diameter having a thickness of 0.24 cm are sintered at 500°C for 2 hrs in air. The silver coated on both sides acts as electrode. An impedance analyzer HIOKI 3532, controlled by a computer is used to obtain the impedance data with a frequency range between 42 Hz and 1 MHz in the temperature range between 300 and 400°C in air is used. FTIR spectrum has been used to confirm the formation of P₂O₇ by using Shimadazu-8000 Spectrophotometer.

RESULTS AND DISCUSSION

FTIR analysis

The FTIR spectrum of LiGdP₂O₇ in the wave number range 400-2000 cm⁻¹ is shown in Fig. 1.b. The FTIR spectrum indicates the presence of characteristic vibrational bands $P_2O_7^{-4}$ indicating the formation of diphosphate. The $P_2O_7^{-4}$ ion (Fig. 1.a) consists of 2 PO₄ tetrahedra sharing a common oxygen atom. Hence, the assignment of the $P_2O_7^{-4}$ modes is carried out in terms of PO₃ and P-O-P vibration. The band assignments have been tabulated in Table 1. The bands appearing between 400-650 cm⁻¹ can be assigned to PO₃ bending mode. The band at 418 cm⁻¹ is assigned to δ PO₃ mode of vibrations. The band at 494 cm⁻¹ is assigned to δ_8 PO₃ vibrations.

Fig. 1(a): FTIR spectrum of LiGdP₂O₇

Table 1

Fig. 1(b): P₂O₇⁻⁴ ion consists of 2 PO₄ tetrahedra sharing a common oxygen atom

Wave number (cm ⁻¹)	Assigned modes of vibration	Wave number (cm ⁻¹)	Assigned modes of vibration	
1294	$\upsilon_{as} PO_3$	725	$\upsilon_s \ P - O - P$	
1008	$\upsilon_s PO_3$	652	_	
963	_	576	$\delta_{as} PO_3$	
910	$\delta_{as} \ P - O - P$	494	$\delta_s PO_3$	
783	$\upsilon_s \; P - O - P$	418	$\delta_s PO_3$	

The band at 576 cm⁻¹ is assigned to asymmetric bending vibrations of PO₃. The band at 725 & 783 cm⁻¹ is assigned to symmetric stretching of PO₃ mode of vibrations. The bands at 910 cm⁻¹ and 1008 cm⁻¹ can be assigned to the asymmetric bending vibrations of P-O-P bond and v_s vibrations of PO₃ modes, respectively. The vibrational band of symmetric stretching of PO₃ has been observed at 1294 cm⁻¹. The intensity ratio of $v_s P - O - P$ to v_s PO₃ can be taken as a criterion for studying the configuration of P₂O₇⁻⁴ ion in a compound. Mahadevan pillai et al.⁵ reported the eclipsed configuration of P₂O₇⁻⁴ ions in Rb(VO₃)(P₂O₇)₂. In this compound the ratio is ≈ 0.3 , which explains the eclipsed configuration of P₂O₇⁻⁴ in LiGdP₂O₇ compound.

Impedance analysis

Fig. 2 shows the complex impedance diagram of LiGdP₂O₇ at two different temperatures. The data fall on a single semicircle whose center lies below the real axis. The conductivity has been found by using the equation $\sigma_b = l / R_b A$, where *l* is the thickness of

the sample and A is the electrode area. The associated capacitance is calculated from the relation $\omega RC = 1$, which is measured at arc maximum and is of the order of pF and related to the bulk response i.e., for the motion of ions within the grains.

Fig. 2: The complex impedance diagram of LiGdP₂O₇ for 375⁰ C & 400⁰ C

The temperature dependance of the bulk conductivity obeys the Arrhenius relation:

$$\sigma_{\rm b}({\rm T}) = \sigma_{\rm o} \exp\left(-E_{\sigma}/\,k{\rm T}\right) \qquad \dots(1)$$

where σ_0 is the pre-exponential factor of the bulk conductivity and E_{σ} the activation energy for the mobile ions. From the plot of 1000/*T* vs log σ_b (T) (Fig. 4)), the activation energy of the electrolyte can be obtained from the slope of the straight line and has been found to be 0.76 eV.

Ac conductivity analysis

The ac conductance spectrum of the sample at different temperatures is shown in Fig. 3. The spectrum consists of two different regions. At low frequency, the frequency independent conductivity plateau is observed which is equal to the dc conductivity.

The dc plateau characterizes the conduction, which is caused mainly by the hopping motion of the mobile ions. At higher frequencies, the conductivity dispersion follows the power law dependence as expected for most of the hopping type ionic conductor. According to Jonscher^{6,7}, the power law exponent is given by -

$$\sigma(\omega) = \sigma_{o} + A \omega^{n} \qquad \dots (2)$$

where A represents the ac conducting part and n is a temperature dependent parameter.

Fig. 3: The conductance spectrum for LiGdP₂O₇ for various temperatures

The high frequency dispersion could be attributed to cooperative event involving many neighboring ions. In the lithium Gadolinium phosphate, the "n" value is found to be greater than one and it is decreased with increase of temperature in the temperature range studied. The calculated values of n have been tabulated in Table 1. The hopping frequency ω_{p} , has been extracted from the Almond and West formalism⁸.

$$\omega_{\rm p} = (\sigma_{\rm o}/A)^{1/n} \qquad \dots (3)$$

The hopping frequency ω_p has been calculated from the conductivity spectra at different temperatures and fitted to the following equation,

$$\omega_{\rm p} = \omega_{\rm e} \exp\left(-E_{\omega}/kT\right) \qquad \dots (4)$$

with

$$\omega_{\rm e} = \omega_{\rm o} \exp\left(-S_{\rm o}/k\right) \qquad \dots (5)$$

where ω_e is the effective attempt frequency and E_{ω} is the activation energy for hopping of migration of ions, ω_o is the true attempt frequency of ions, and S_m is the activation entropy for hopping or migration of ions. The true attempt frequency ω_o are obtained from the harmonic potential well expression,

$$\omega_{\rm o} = (E_{\omega}/2ma^2)^{1/2}$$
 ...(6)

where m is the mass of the mobile ion and a is the jump distance and it is taken as 3°Å for the sample. From the infinite temperature intercept, the effective attempt frequencies have been calculated. The ω_e value is found to be 2.15×10^{19} Hz. True attempt frequency ω_o is equal to 7.6×10^{12} . The quantization of ion hopping also assists in the estimation of the mobile ion concentration of a conductor. The magnitude of ionic conductivity for a particular material is effectively determined by the product of the ion hopping rate ω_p and a carrier concentration term, K

$$\sigma_{\rm o} = {\rm K}\omega_{\rm p}{\rm T}^{-1} \qquad \dots (7)$$

where the magnitude of the constant. K is largely a measure of the mobile ion concentration. It has been found in the present study that the K value is 3.97×10^{-9} S cm⁻¹ K Hz⁻¹ while the value of K for Na β -alumina is of the order of 1.5×10^{-12} S cm⁻¹ K Hz⁻¹. This indicates that the compound under investigation have relatively high mobile ion concentrations.

Temp. (°C)	σ_{dc}	n	Α	β	ω _p		
300	7.24 x 10 ⁻⁸	1.29 ± 0.02	2.13 x 10 ⁻¹³	0.56	1.94 x 10 ⁴		
325	3.89 x 10 ⁻⁷	1.21 ± 0.02	6.62 x 10 ⁻¹³	0.71	$5.86 \ge 10^4$		
350	1.66 x 10 ⁻⁶	1.26 ± 0.02	2.04 x 10 ⁻¹³	0.72	3.1 x 10 ⁵		
375	5.62 x 10 ⁻⁶	1.20 ± 0.03	3.93 x 10 ⁻¹³	0.74	9.2 x 10 ⁵		
400	2.00 x 10 ⁻⁵	1.17 ± 0.03	5.02 x 10 ⁻¹³	0.77	3.1 x 10 ⁶		
Activation energy for hopping $E_{\omega}(eV) = 0.74$							
Activation energy			$E_{\sigma}(eV) = 0.76$				
Effective frequency			$\omega_{\rm e}({\rm Hz}) = 2.15 \ {\rm x} \ 10^{19}$				
True attempt frequency			$\omega_{\rm o}({\rm Hz}) = 7.6 \ {\rm x} \ 10^{12}$				
S_{ω} / k			= 6.45				

Table 1: Transport parameters of LiGdP₂O₇

Carrier concentration

The close value of E_{ω} and E_{σ} implies that the charge carriers have to overcome the same energy barrier while conducting as well as relaxing.

K (S cm⁻¹K Hz⁻¹) = 3.97×10^{-9}

Fig. 4: The temperature dependence of both σ_b and ω_p of LiGdP₂O₇

CONCLUSION

The polycrystalline sample of $LiGdP_2O_7$ has been prepared by wet chemical method. The FTIR spectra show the presence of characteristic vibrational bands of $P_2O_7^{4-}$ ion. From the conductance spectrum, it has been found that $LiGdP_2O_7$ have relatively high mobile ion concentrations.

REFERENCES

- 1. B. Wang, J. Liu, Q. Sun, R. Li, T.-K. Sham and Xueliang Sun Biqiong Wang, Nanotechnol., **25** (2014) 504007.
- 2. Y. Deng, C. Eames, J.-N. Chotard, F. Lalère, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier and M. S. Islam, J. Am. Chem. Soc., **137(28)**, 9136 (2015).
- 3. V. Thangadurai, D. Pinzaru, S. Narayanan and A. K. Baral, J. Phys. Chem. Lett., 6(2), 292 (2015).
- 4. R. L. Hallford, J. Bennazha, A. El Maadi, M. El Omari and A. Boukhari, Proc. Okla. Acad. Sci., **88**, 35 (2008).
- 5. V. P. M. Pillai, B. R. Thomas, V. U. Nayar and K.-H. Lii, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, **55**(9), 1809 (1999).
- 6. A. K. Joncher, Nature, **256**, 673 (1977).

- 7. A. K. Joncher, J. Mater. Sci., 16, 2037 (1981).
- 8. D. P. Almond, G. K. Duncan, A. R. West, Solid State Ionics, 9/10, 277 (1983).

Accepted : 16.03.2016