December 2009

Volume 4 Issue 4

Inorganic CHEMISTRY

Trade Science Inc.

An Indian Journal

Full Paper ICAIJ, 4(4), 2009 [144-153]

Synthesis and characterization of novel polymeric biologically active mixed ligand triazole-3-thiones complexes

S.A.Ibrahim, S.A.El-Gyar, A.Abd El-Sameh*, M.A.El-Gahami Chemistry Department, Faculty of Science, Assiut University, Assiut, (EGYPT) E-mail : dr1ahmed@yahoo.com Received: 8th October, 2009 ; Accepted: 18th October, 2009

ABSTRACT

A series of novel polymeric mixed ligand Co(II), Ni(II), Cu(II) and Cd(II) complexes[MLL'Cl₂]mH₂O and[MBHTCl.2H₂O]nH₂O where M=Co(II), Ni(II),Cu(II), Cd(II); m=0-3; L=4-amino-5-benzyl-4H-1,2,4-triazole-3-thione (ABT), 5-benzyl-4-(benzylidene-amino)-4H-1,2,4-triazole-3-thione (BBT), 5benzyl-4-[(2-hydroxybenzylidene)-amino]-4H-1,2,4-triazole-3-thione (HBHT) and 5-benzyl-4-[(4-mehtoxy-benzylidene)-amino] -4H-1,2,4-triazole-3-thione (BMT) as a primary ligands and L'=1,10-phenanthroline mono-hydrate (phen) or α, α' -bipyridyl (bipy) as secondary ligands have been prepared. The analytical data indicated that the interaction between the binary chelates and the secondary ligands proceeds through either substitution or addition reactions. The structures were determined by elemental analysis, molar conductance, magnetic measurements, thermal behaviour, infrared and electronic spectral data. The stoichiometry of synthesized complexes is 1:1:1 or 1:1:2 (metal: primary ligand: secondary ligand). Octahedral structure was proposed for the obtained complexes in which the central metal atom is hexa-coordinated. The low solubility of the complexes in common organic solvents with their magnetic moment values indicated their polymeric nature. The biological activity of the binary chelates enhanced significantly upon their interac-© 2009 Trade Science Inc. - INDIA tion with the secondary ligands.

INTRODUCTION

Triazole-3-thiones and their complexes have been reported to be biologically versatile compounds having bactericidal properties. Amine and thione-substituted triazoles have been studied as anti-inflammatory and antimicrobial agents^[1,2]. As such, they are part of the larger family of sulfur and nitrogen containing organic compounds which display a broad range of biological activity, finding applications as antitumor, antibacterial, antifungal and antiviral agents^[3-5]. The chemistry of transition metal complexes with heterocyclic thiones con-

KEYWORDS

Synthesis; Antibacterial activity; Mixed ligand complexes.

tinues to be of interest, because of their striking structural features as well as their biological importance^[6-8]. However, information on Co(II), Ni(II), Cu(II) and Cd(II) complexes derived from substituted 1,2,4triazoles is scarce^[9-11].

In this paper we report the synthesis and characterization of novel polymeric mixed ligand triazole-3thiones complexes with nitrogen donors which consider a continued of our previous work on such family of compounds^[12]. The interaction between the triazole-3thione binary chelates and the nitrogen donors enhance significantly their biological activities. (1)

145

RESULTS AND DISCUSSION

The analytical and physical data of the mixed ligand complexes are given in TABLE 1. The obtained results indicated that the prepared complexes are of good purity and reveal the formation of mixed ligand complexes having 1:1:1 or 1:1:2 (metal ion: primary ligand: secondary ligand) ratio. The obtained data clearly indicate that the secondary ligands phen or bipy used act as neutral bidentate ligands. The suggested structures of the mixed ligand complexes formed indicated that both the two secondary ligands have the same behaviour. In general all the mixed ligand complexes were formed according to addition or substitution reactions:

Addition reaction

$[MLCl_2] nH_2O+L' \rightarrow [MLL'Cl_2]mH_2O$

where M=Co(II), Ni(II),Cu(II), Cd(II); L=BBT or BMT; L=phen or bipy; n=0-2; m=0-3.

Substitution reaction

$[MBHTCl.2H,O]nH_{2}O+L' \rightarrow [MBHTLCl]mH_{2}O+2H_{2}O (2)$

where M=Co(II), Ni(II), Cu(II), Cd(II); L'=phen or bipy; n=0-1; m=0-5.

The methods used for preparation and isolation of these compounds give materials of good purity as supported by their analyses. All the mixed ligand complexes obtained are coloured except the Cd(II) complexes have a white colour expected for d¹⁰ compounds. The mixed ligand complexes obtained are thermally stable and decompose over 118°C without melting. The solid mixed ligand complexes obtained are stable in air and nonhygroscopic. They are insoluble in common organic solvents but dissolve well in dimethylformamide and dimethylsulphoxide, the observed low solubility of the mixed ligand complexes indicates that they could be polymeric. The complexes 4 and 13 have molar conductance values of 164.10 and 139.6 Ohm⁻¹ cm² mol⁻¹ respectively, indicating 1:2 electrolytic nature of these complexes since the reasonable range for 1:2 electrolytes in dimethylformamide solutions is 130-170 Ohm⁻¹ cm² mol^{-1[18]}. The other mixed ligand complexes have molar conductance values of dimethylformamide solutions within the range 19.48-38.53 Ohm⁻¹ cm² mol⁻¹ (TABLE 1) indicating the nonelectrolytic nature of these complexes since the reasonable range for 1:1 electrolytes in dimethylformamide solutions is 65-90 Ohm⁻¹

cm² mol^{-1[18]}.

Infrared spectra

Relevant IR bands which provide considerable structural evidence for the mode of attachment of the binary chelate to phen and bipy ligands are reported in TABLE 2 and 3. The IR spectrum of the free phen ligand in the absorption region 1417-1580cm⁻¹, which is concerned with the ring vibrational modes v(C-C)and v(C-N), consists of three intense significant bands; the first one close to 1580cm⁻¹, the second in the neighborhood of 1500 cm⁻¹ and the third is located at 1417 cm⁻¹. The first and the second bands usually split into doublet and triplet bands respectively^[19]. These bands were shifted to higher frequencies in the mixed ligand complexes. The free phen ligand consistently exhibit two intense bands at 750 and 870cm⁻¹, the former could be assigned to the out of plane motion of the hydrogen atoms on the heterocyclic ring and the later is due to the hydrogen in the center ring^[20,21]. Comparison of these bands with those appeared in the IR spectra of the mixed ligand complexes indicates that these bands are shifted to lower frequencies in the ranges 718-731 and 829-861cm⁻¹. The fact that all the mixed ligand complexes exhibit intense significant absorption bands at all wave numbers mentioned above confirms the coordination of phen molecule to the binary chelate.

The IR spectrum of the free bipy ligand exhibit a series of significant IR absorption bands appearing in the vibrational regions 3041, 1576, 1552 and 753 cm⁻ ¹, these bands are apparently the characteristic absorptions of the free bipy ligand^[22,23], these bands suffer a positive shift to a higher wavenumber on complexation. This shift attributed to the coordination of the bipy secondary ligand to the binary chelates^[24,25]. The $v(NH_2)$ vibrational bands of the binary chelates^[12] are shifted to higher frequencies in the IR spectra of the mixed ligand complexes. The band appear in the IR spectra of the mixed ligand complexes within the range 1618-1643cm⁻ ¹ attributed to v(C=N) vibration of the azomethine group. This band shifts to higher frequency in the mixed ligand complexes relative to the binary chelates^[12]. The band appearing within the range 3070-3100cm⁻¹ in the IR spectra of the mixed ligand complexes could attributed to the v(NH) vibration, this band suffers a shift to higher wave number in the mixed ligand complexes. In most

> Inorganic CHEMISTRY An Indian Journal

Full	Paper	c
------	-------	---

N	Complex	Decomp.	0.1	Yield	Ana	alysis % F	ound (Calc	ed.)	Λ_m^*
No.	[Empirical formula] (Formula weight)	Temp. (°C)	Color	(%)	С	Н	Ν	S	(Ohm ⁻¹ cm ² mol ⁻¹)
	[CuBHTphenCl]3H ₂ O		¥7 11 · 1		50.50		12.02		,
1	$(C_{28}H_{27}ClCuN_6O_4S)$	220	Yellowish Green	51	52.52 (52.33)	4.51 (4.23)	12.82 (13.08)	4.73 (4.98)	26.42
	M.Wt.= 642.62		Green		(52.55)	(1.23)	(15.00)	(1.90)	
	[CuBMTphenCl ₂]H ₂ O								
2	$(C_{29}H_{26}Cl_2CuN_6O_2S)$	228	Green	56	53.38 (53.01)	3.75 (3.99)	12.81 (12.79)	4.83 (4.88)	38.53
	M.Wt.= 657.07				(55.01)	(3.77)	(12.77)	(4.00)	
	[NiBHTphenCl]H2O								
3	(C ₂₈ H ₂₃ ClNiN ₆ O ₂ S)	250	Greenish Brown	43	56.07 (55.89)	3.75 (3.85)	13.93 (13.97)	5.13 (5.33)	28.63
	M.Wt.= 601.73		DIOWII		(55.67)	(3.05)	(13.77)	(5.55)	
	[CoABT(phen)2]Cl2.4H2O								
4	$(C_{33}H_{34}Cl_2CoN_8O_4S)$	210	Dark Brown	50	51.31 (51.57)	4.33 (4.46)	14.31 (14.58)	4.25 (4.17)	164.11
	M.Wt.= 768.58		DIOWII		(31.37)	(4.40)	(14.58)	(4.17)	
	[CoBHTphenCl]2H ₂ O								
5	(C ₂₈ H ₂₅ ClCoN ₆ O ₃ S)	200	Dark	48	53.98	3.96	13.62 (13.56)	5.32	24.95
	M.Wt.= 619.99		Brown		(54.24)	(4.06)	(15.50)	(5.17)	
	[CoBMTphenCl ₂]1.5H ₂ O								
6	$(C_{29}H_{27}Cl_2CoN_6O_{2.5}S)$	218	Grey	40	52.73	3.92	12.90	4.56	37.69
	M.Wt.= 661.47				(52.66)	(4.11)	(12.71)	(4.85)	
	[CdBHTphenCl]0.5H ₂ O								
7	$(C_{28}H_{22}CdClN_6O_{1.5}S)$	>360	Yellow	51	52.05	3.36	12.94	4.82	34.89
	M.Wt. = 646.44				(52.02)	(3.43)	(13.00)	(4.96)	
	[CdBMTphenCl ₂]0.5H ₂ O								
8	$(C_{29}H_{25}CdCl_2N_6O_{1.5}S)$	260	White	38	49.70	3.57	12.18	5.01	19.48
	M.Wt. = 696.93				(49.98)	(3.62)	(12.06)	(4.60)	
	[CuBHTbipyCl]5H2O								
9	$(C_{26}H_{31}ClCuN_6O_6S)$	280	Pale Green	49	47.60	4.96	12.64	4.99	27.86
-	M.Wt. = 654.63			.,	(47.70)	(4.77)	(12.84)	(4.89)	
	[CuBMTbipyCl ₂]H ₂ O								
10	$(C_{27}H_{26}Cl_2CuN_6O_2S)$	215	Green	53	51.31	4.22	12.93	4.89	23.13
10	M.Wt.= 633.05		or een	00	(51.23)	(4.14)	(13.28)	(5.07)	20110
	[NiBHTbipyCl]2.5H ₂ O								
11	$(C_{26}H_{26}CINiN_6O_{3.5}S)$	220	Greenish	55	51.89	4.47	13.93	5.28	23.31
••	M.Wt.= 604.74		Brown		(51.64)	(4.33)	(13.89)	(5.30)	20101
	[NiBMTbipyCl ₂]3H ₂ O								
12	$(C_{27}H_{30}Cl_2NiN_6O_4S)$	220	Yellowish	41	48.59	4.28	12.31	4.62	22.03
12	M.Wt = 664.23	220	Green	-11	(48.82)	(4.55)	(12.65)	(4.83)	22.03
	$[CoABT(bipy)_2]Cl_2.3H_2O$								
13	$(C_{29}H_{32}Cl_2CoN_8O_3S)$	220	Dark	43	49.32	4.33	16.23	4.78	139.62
15	$(C_{29}\Pi_{32}CI_{2}COV_{8}O_{3}S)$ M.Wt.= 702.52	220	Brown	45	(49.58)	(4.59)	(15.95)	(4.56)	139.02
14	$[CoBBTbipyCl_2]2H_2O$	200	Day	55	50.52	4.38	13.72	5.26	05.75
14	$(C_{26}H_{26}Cl_2CoN_6O_2S)$	200	Brown	55	(50.66)	(4.25)	(13.63)	(5.20)	25.75
	M.Wt.= 616.43								

TABLE 1 : Analytical and physical data for the mixed ligand complexes

Inorganic CHEMISTRY An Indian Journal

D	Full	Paper
---	------	-------

	Complex	Decomp.	~ .	Yield	Analysis % Found (Calcd.)				Λ_{m}^{*}	
No.	No. [Empirical formula] (Formula weight	Temp. (°C)	Color	(%)	С	Н	Ν	S	(Ohm ⁻¹ cm ² mol ⁻¹)	
	[CoBHTbipyCl]2H ₂ O	•••	Dark	10	52.49	4.36	13.98	5.23	25.25	
	$(C_{26}H_{25}ClCoN_6O_3S)$ M.Wt.= 595.97	200	Brown	49	(52.40)	(4.23)	(14.10)	(5.38)	27.27	
	$[CdBBTbipyCl_2]$ $(C_{26}H_{22}CdCl_2N_6S)$ $M.Wt = 633.88$	240	White	47	49.40 (49.26)	3.32 (3.49)	13.53 (13.26)	4.83 (5.06)	28.26	
17	$[CdBMTbipyCl_2]$ $(C_{27}H_{24}CdCl_2N_6OS)$ $M.Wt.= 663.90$	270	White	53	48.77 (48.85)	3.71 (3.64)	12.39 (12.66)	4.79 (4.83)	33.35	

*Measured in DMF

TABLE 2 : Some IR frequencies of the free ligands and their mixed ligand complexes (cm^{-1})

	·				Thioami	de bands						
C	v(OH)	v(NH)/	v (C=N)	I II I	III	IV	– phen characteristic bands					
Compound	(H ₂ O)	$\mathbf{v}(\mathbf{NH}_2)^*$	(Azo-methine)	ν(C=S)+ ν(C-N)+ δ(C-H)	v(C-N) + v(C-S)	v(C=S)						
phen	3367	-	-	-	-	-	-	1580	1500	1417`	870	750
[CuBHTphenCl]3H ₂ O	3411	3100	1622	1560	1379	970	751	1600	1520	1440	840	722
[CuBMTphenCl ₂]H ₂ O	3460	3100	1639	1589	1355	1020	776	1597	1508	1418	832	718
[NiBHTphenCl]H2O	3360	3075	1636	1565	1339	1024	760	1601	1512	1421	844	724
[CoABT(phen)2]Cl2.4H2O	3340	3258/ 3150*	-	1578	1337	1002	764	1600	1512	1421	844	728
[CoBHTphenCl]2H ₂ O	3408	3075	1639	1577	1379	1016	772	1598	1516	1422	837	719
[CoBMTphenCl ₂]1.5H ₂ O	3400	3100	1640	1569	1373	1024	760	1600	1508	1419	837	731
[CdBHTphenCl]0.5H ₂ O	3489	3100	1619	1597	1384	1012	785	1598	1510	1421	861	725
[CdBMTphenCl ₂]0.5H ₂ O	3420	3100	1641	1583	1379	1020	784	1602	1512	1421	829	724

*:v(NH₂) vibrations

Table 3 : Some IR frequencies of the free α, α' -bipyridyl ligand and its mixed ligand complexes (cm⁻¹)

								Thioamide bands			
	v(OH)	(NTT) / (NTT) *	v(C=N)			• .• •		I	II	Ш	IV
Compound	(H ₂ O)	v(NH)/v(NH ₂)*	(Azo- methine	ыру	bipy characteristic bands			δ(C- H)+δ(N- H)	ν(C=S)+ν(C- N)+δ(C-H)	ν(C- N)+ν(C- S)	v(C=S)
Bipy	-	-	-	3041	1576	1552	753	-	-	-	-
[CuBHTbipyCl]5H2O	3460	3070	1618	3050	1601	1568	756	1568	1371	992	724
[CuBMTbipyCl2]H2O	3460	3100	1640	3080	1597	1589	776	1589	1355	1020	726
[NiBHTbipyCl]2.5H2O	3408	3100	1639	3061	1598	1565	772	1565	1340	1016	768
[NiBMTbipyCl2]3H2O	3440	3100	1643	3050	1597	1569	758	1569	1322	992	738
[CoABT(bipy)2]Cl2.3H2O	3346	3263/3149*	-	3050	1598	1561	762	1561	1313	1028	764
[CoBBTbipyCl ₂]2H ₂ O	3408	3090	1640	3050	1597	1564	762	1564	1350	1022	730
[CoBHTbipyCl]2H2O	3441	3100	1636	3061	1600	1568	774	1568	1351	1008	722
[CdBBTbipyCl ₂]	-	3090	1637	3110	1602	1583	784	1602	1379	1020	760
[CdBMTbipyCl ₂]	-	3100	1639	3051	1601	1565	761	1565	1358	1024	728
		•	*• v(NH) v	ibratio	ns					

*: v(NH₂) vibrations

Inorganic CHEMISTRY Au Indian Journal

Full	Paper	¢
	TADIE 4.	

TABLE 4 : Electronic spectral data and magnetic moment ($\mu_{_{eff}}$) of the mixed ligand complexes

Compound	$\nu_{max}(kK)$ (ϵ_{max} · cm ² mol ⁻¹)	Assignment	$\mu_{\rm eff}$	Compound	$v_{max}(kK) \ (\epsilon_{max}, cm^2 \ mol^{-1})$	Assignment	$\mu_{\rm eff}$		
	30.96 (1119.40)	$N \rightarrow \pi^*$			16.32 (3.15)	d-d			
Phen	35.59 (16791.04)	$\pi \rightarrow \pi^*$	-	NIDMTE CI 1211 O	27.67 (972.97)	LMCT	3.20		
	37.58 (24626.87)	$\pi \rightarrow \pi^*$		[NiBMTbipyCl ₂]3H ₂ O	32.95 (9000.00)	Intraligand	3.20		
	15.87 (30.37)	d-d			34.06 (9567.57)	Intraligand			
	24.92 (4297.52)	LMCT			18.74 (94.47)	d-d			
[CuBHTphenCl]3H ₂ O	29.75 (7851.24)	LMCT	-	[CoABT(bipy)2]Cl2.3H2O	31.91 (12510.64)	Intraligand	6.07		
	37.17 (19504.13)	Intraligand			33.30 (13021.28)	Intraligand			
	13.33 (31.60)	d-d			15.15 (39.66)	d-d			
[CuBMTphenCl ₂]H ₂ O	31.73 (7764.71)	Intraligand	1.29	[CoBBTbipyCl ₂]2H ₂ O	31.46 (12517.24)	Intraligand	5.27		
	36.61 (10323.53)	Intraligand			33.13 (16310.34)	Intraligand			
	16.42(3.44)	d-d			14.71 (72.65)	d-d			
	24.05 (1894.74)	LMCT		[CoBHTbipyCl]2H2O	23.77 (2474.23)	LMCT	5.21		
[NiBHTphenCl]H ₂ O	34.10 (6947.37)	Intraligand	3.18		31.99 (10515.46)	Intraligand			
	37.21 (16736.84)	Intraligand			28.56 (1714.29)	LMCT	-		
	19.36 (79.34)	d-d		[CdBBTbipyCl ₂]	36.38 (12171.43)	Intraligand			
[CoABT(phen)2]Cl2.4H2O	28.16 (3438.02)	LMCT	5.26		28.99 (2213.59)	LMCT			
	36.63 (31206.61)	Intraligand		[CdBMTbipyCl ₂]	32.55 (3116.50)	Intraligand	-		
	15.03(41.11)	d-d			35.26 (5592.23)	Intraligand			
[CoBHTphenCl]2H ₂ O	23.55 (2500.00)	LMCT	5.15	μ _{eff} : in Boh	r magneton : diam	agnetic	•		
	37.05 (26500.00)	Intraligand		of the thioamide group		0 1			
	16.58 (93.40)	d-d		relative to the binary	-	-			
[CoBMTphenCl ₂]1.5H ₂ O	34.11 (21411.76)	Intraligand	5.50	the mixed ligand com	-	•••			
	24.89 (1024.39)	LMCT		or coordination water	-	•			
[CdBHTphenCl]0.5H ₂ O	34.30 (3512.20)	Intraligand	-	within the range 334		. ,			
	37.70 (10682.93)	Intraligand		tional modes of the water molecules ^[26] and this was confirmed by the results of thermal analysis.					
	29.75 (2543.05)	LMCT		-		-			
[CdBMTphenCl ₂]0.5H ₂ O	34.20 (6198.68)	Intraligand	-	Electronic spectra	and magneti	c suscepti	bility		
	37.70 (12000.00)	Intraligand		measurements					
bipy	35.48 (15790.39)	$\pi \rightarrow \pi^*$	-	The electronic sp	pectral data of t	he free phe	n and		
	15.63 (23.77)	d-d		bipy ligands and thei	r mixed ligand	complexes	is de-		
	24.94 (3547.17)	LMCT		picted in TABLE 4 as	s well as their co	rrected mag	gnetic		
[CuBHTbipyCl]5H ₂ O	29.91 (7396.23)	LMCT	-	moment (μ_{eff}). The ir	nportance of th	e magnetic	mea-		
	36.23 (14339.62)	Intraligand		surements comes from the fact that it plays an impor-					
	13.67 (16.32)	d-d		tant role in studying		•			
[CuBMTbipyCl ₂]H ₂ O	27.93 (1764.71)	LMCT	2.02	plexes. A medium int					
	37.62 (10058.82)	Intraligand		could be recognized in		-			
	16.95 (11.25)	d-d		phen ligand, assigned			-		
	23.80 (1725.00)	LMCT		intensity bands located in the region 35.59-37.58kK					
[NiBHTbipyCl]2.5H2O	33.01 (6900.00)	Intraligand	2.85	attributed to the $\pi \rightarrow \pi$			-		
	34.32 (8550.00)			tra of the free bipy lig	and displays on	ly one high i	inten-		

of the mixed ligand complexes containing phen and bipy secondary ligands, the IR spectral characteristic bands

 \mathbf{C}

Inorganic CHEMISTRY An Indian Journal

sity a significant absorption band in the region 35.48kK attributed to the $\pi \rightarrow \pi^*$ transitions^[19,27-30]. Three sets of bands could be recognized in the electronic spectra ICAIJ, 4(4) December 2009

	Temp.	Weight	t loss %			Residue		
Complex	range ^o C	Calcd.	Found	Loss of moiety	Process	Calcd. (Found)%	Nature	
[CuBHTphenCl]3H ₂ O	51-140	8.40	8.37	3H ₂ O	Dehydration	29.96 (30.04)	CuO-	
	233-750	61.58	61.59	Cl+phen+C7H5+C7H7	Decomposition	29.90 (30.04)	C_2HN_4S	
	57-115	2.74	2.63	H_2O	Dehydration			
CuDMTrhanCl III O	185-284	24.65	24.71	$2Cl+C_7H_7$	Decomposition	18.50 (18.61)	CuS-CN	
[CuBMTphenCl ₂]H ₂ O	286-471	16.28	16.24	C_7H_7O	Decomposition	18.30 (18.01)	Cus-CN	
	472-750	37.77	37.81	Phen+C ₂ H ₂ N ₃	Decomposition			
	46-132	8.88	8.84	H ₂ O+Cl	Deh.+Decom.			
[NiBHTphenCl]H ₂ O	146-465	27.79	27.80	$C_7H_7 + C_6H_4$	Decomposition	17.73 (17.77)	NiO-S	
	466-737	45.57	45.59	Phen+C ₃ H ₂ N ₄	Decomposition			
	42-103	5.81	5.71	$2H_2O$	Dehydration			
[CoBHTphenCl]2H ₂ O	142-478	32.66	32.78	$Cl+C_7H_7+C_6H_4$	Decomposition	25.63 (25.65)	Co-C ₂ N ₂ S	
	479-750	35.84	35.86	Phen+CH ₂ N ₂	Decomposition			
	43-156	4.08	4.03	1.5H ₂ O	Dehydration			
[CoBMTphenCl ₂]1.5H ₂ O	157-325	37.98	37.99	2Cl+phen	Decomposition		~ ~	
	326-470	27.51	27.62	$2C_7H_7$	Decomposition	13.75 (13.65)	CoS	
	471-750	16.63	16.71	$C_3H_2N_4O$	Decomposition			
	49-135	1.39	1.37	0.5H ₂ O	Dehydration			
[CdBHTphenCl]0.5H ₂ O	200-482	33.36	33.48	Cl+phen	Decomposition	19.86 (19.86)	CdO	
	483-725	47.85	47.92	BHT	Decomposition			
	55-110	1.29	1.28	0.5H ₂ O	Dehydration			
[CdBMTphenCl ₂]0.5H ₂ O	218-471	40.46	40.48	$2Cl+C_8H_8O+C_7H_7$	Decomposition		CdS-	
r - 23 2	472-714	29.59	29.42	Phen+CN	Decomposition	,	CHN ₃	
	58-145	19.17	19.01	5H ₂ O+Cl	Deh.+Decom.		CuS-	
[CuBHTbipyCl]5H2O	277-750	53.80	53.87	$Bipy+C_7H_7+C_7H_5O$	Decomposition	26.97 (27.12)	C_2HN_4	
	49-117	2.84	2.74	H ₂ O	Dehydration			
[CuBMTbipyCl ₂]H ₂ O	118-750	87.13	87.22	2Cl+bipy+BMT	Decomposition	12.57 (12.57)	CuO	
	40-124	7.44	7.54	2.5H ₂ O	Dehydration			
	126-175	5.87	5.72	Cl	Decomposition			
[NiBHTbipyCl]2.5H ₂ O	176-466	43.19	43.24	Bipy+C ₇ H ₅ O	Decomposition	17.31 (17.41)	NiS-N	
	468-750	26.13	26.09	$C_7H_7+C_2HN_3$	Decomposition			
	42-113	8.13	8.11	3H ₂ O	Dehydration			
	161-297	22.28	22.27	$2Cl+C_6H_5$	Decomposition			
[NiBMTbipyCl ₂]3H ₂ O	300-479	22.20	23.43	Bipy	Decomposition	16.06 (16.10)	NiO-S	
	481-748	29.96	29.99	$C_{11}H_{11}N_4$	Decomposition			
	431-748	29.90 7.69	7.58	$C_{11}H_{11}N_4$ $3H_2O$	Decomposition			
[CoABT(bipy)2]Cl2.3H2O	170-750	83.93	83.99	2Cl+2bipy+ABT	Decomposition	9.24 (9.22)	¹ / ₂ Co ₂ C	
	43-97	5.83	5.78	2CI+20IPy+AB1 2H ₂ O	Dehydration			
[CoBBTbipyCl ₂]2H ₂ O	43-97 200-461	3.85 49.25	3.78 49.22		Decomposition	18 03 (10 12)	CoS-CN	
				$2Cl+bipy+C_6H_5$	-	18.93 (19.13)	COS-CIN	
	462-750	25.75	25.87	$C_7H_7+C_2H_2N_3$	Decomposition			
	43-163	6.04	6.12	2H ₂ O	Dehydration	17.04 (10.04)	0.00	
[CoBHTbipyCl]2H ₂ O	166-381	32.16	32.02	Cl+bipy	Decomposition	17.94 (18.04)	CoO-S	
	382-750	43.79	43.80	$C_{16}H_{13}N_4$	Decomposition			

Inorganic CHEMISTRY An Indian Journal

 \mathbf{O}

Full Paper

	Temp.	Weight	loss %			Residue		
Complex	range ^o C	Calcd.	Calcd.	Loss of moiety	Process	Calcd. (Found)%	Nature	
[CdDDThinyCl]	232-477	32-477 50.19 50.13 2Cl+bipy+C ₇ H ₇ De		Decomposition	24.00 (24.00)	C IC N		
[CdBBTbipyCl ₂]	478-750	24.77	24.89	$C_7H_6+C_2HN_3$	Decomposition	24.99 (24.99)	CdS-N	
[CdBMTbipyCl ₂]	200-377	34.22	34.13	2Cl+bipy	Decomposition	22.05 (22.09)	CdS-	
	378-750	31.78	31.89	$C_{7}H_{7}+C_{8}H_{8}O$	Decomposition	33.95 (33.98)	C_2HN_4	

TABLE 6 : Antimicrobial activity of the mixed ligand complexes

	Bacteria (Inhi	bition Zone in
Compound	mr	n)
Compound	Staphylococcus	Pseudomonas
	aureus	aeruginosa
Vancomycin	-	-
Ceftazimide	0.6	-
Neomycin	0.8	-
[CuBHTphenCl]3H ₂ O	14	17
[CuBMTphenCl ₂]H ₂ O	12	15
[NiBHTphenCl]H ₂ O	10	16
[CoABT(phen)2]Cl2.4H2O	9	10
[CoBHTphenCl]2H ₂ O	11	13
[CoBMTphenCl ₂]1.5H ₂ O	6	13
[CdBHTphenCl]0.5H ₂ O	6	17
[CdBMTphenCl ₂]0.5H ₂ O	18	15
[CuBHTbipyCl]5H2O	10	15
[CuBMTbipyCl2]H2O	9	7
[NiBHTbipyCl]2.5H2O	8	14
[NiBMTbipyCl2]3H2O	10	13
[CoABT(bipy)2]Cl2.3H2O	6	8
[CoBBTbipyCl ₂]2H ₂ O	15	12
[CoBHTbipyCl]2H2O	7	11
[CdBBTbipyCl ₂]	4	16
[CdBMTbipyCl ₂]	16	13

-: No inhibition zone

of the obtained mixed ligand complexes listed in TABLE 4. The first with a v_{max} in the range 31.46-37.70kK, could be attributed to intra-ligand charge transfer transitions. The second set includes bands having v_{max} in the range 23.55-29.91kK. These bands are assigned to a L \rightarrow MCT transitions. The third set of bands of Cu(II) complexes was found to have v_{max} in the range 13.33-15.87kK. This band is due to a d-d transition which is typical for distorted octahedral Cu(II) complexes^[31]. This band could be assigned to all the three transitions

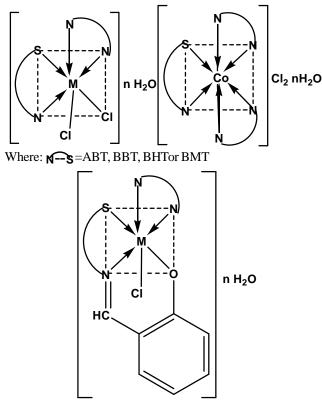
 ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}, {}^{2}B_{1g} \rightarrow {}^{2}A_{1g} \text{ and } {}^{2}B_{1g} \rightarrow {}^{2}E_{g} \text{ which}$

are usually found for tetragonal Cu(II) complexes^[31]. The mixed ligand Cu(II) complexes 1 and 9 display a diamagnetic nature (TABLE 4) attributed either to their polymeric nature or super exchange interaction^[32] in complex molecules and/or high polarizability^[33] of the ligands which supplies more electron density to copper ion and consequently the ions interact more strongly. The magnetic moment values for the mixed ligand Cu(II) complexes 2 and 10 at room temperature were found to be 1.29 and 2.02 B.M. respectively. These values are very close to the values expected for spin free octahedral Cu(II) complexes^[32-35], suggesting distorted octahedral geometry for the obtained mixed ligand Cu(II) complexes. Ni(II) mixed ligand complexes were found to give a d-d band with v_{max} within the range 16.32-16.95kK. This band could be assigned to the transi-

tions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$, suggesting octahedral geometry^[31]. The room temperature magnetic moments of Ni(II) mixed ligand complexes are within the range 2.85-3.20 B.M. suggesting octahedral geometry^{[34-} 36] for theses complexes. The d-d transition bands observed in the obtained Co(II) mixed ligand complexes cover the range 14.71-19.36kK, and could be attributed to the

 ${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{2g}(v_{2} \text{ and } {}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)v_{3}$

transitions, suggesting distorted octahedral environment around Co(II)^[31,34,37]. The room temperature magnetic moment values of the Co(II) mixed ligand complexes are within the range 5.15-6.07 B.M. expected for octahedral Co(II) complexes^[34-36]. The lower magnetic moment values (5.15, 5.21 B.M.) of the complexes 5 and 15 may attributed to the presence of a low symmetry component in the ligands field as well as the covalent nature of the metal-ligand bonds. All the mixed ligand Cd(II) complexes are diamagnetic as ex-


151

pected for d¹⁰ system. On the basis of elemental analysis, infrared spectra and thermal analysis, octahedral geometry is suggested for all Cd(II) complexes.

Thermal analysis

The TGA profile of 1,10-phenanthroline mixed ligand complexes indicated that they contains only hydration water molecules (TABLE 5). The thermal behaviour of all complexes display a mass loss on the TGA curves amounting to 1.28-8.37%; (theoretical 1.29-8.40%), corresponding to loss of 0.5-5 hydration water molecules, within a temperature range 42-156 °C. The presence of hydration of water molecules in the prepared α , α' -bipyridyl mixed ligand complexes was verified by TGA(TABLE 5). The thermal behaviour of the bipy mixed ligand complexes (9-15) display as mass loss of 2.74-19.01%; (theoretical 2.84-19.17%), within a temperature range 40-163°C, corresponding to loss of 1-5 hydration water molecules.

Based on the foregoing discussion, the proposed structure of the mixed ligand complexes can be formulated as follows, (Scheme 1):

where: M=Cu(II), Ni(II), Co(II) or Cd(II); n=0-5; n=L=phen or bipy

Scheme 1: Proposed structure for the mixed ligand complexes

Biological testing

A filter paper disc method was employed for the in vitro study of antibacterial effects against gram positive bacteria Staphylococcus aureus and gram negative bacteria Pseudomonas aeruginosa. The following drugs were used as reference materials Vancomycin, Ceftazimide and Neomycin. The inhibitory effects of the mixed ligand complexes against these organisms are given in TABLE 6. The screening results indicate that all mixed ligand complexes exhibited antibacterial activities. Moreover, comparing the obtained data with that of the binary chelates^[12] indicated that the antibacterial activity enhanced on complexation with the nitrogen donor ligands. Also It could be noted that the mixed ligand complexes showed a great inhibitory effects against bacteria compared to those with the well known drugs Vancomycin, Ceftazimide and Neomycin.

EXPERIMENTAL

All chemicals used in the preparative work were of A.R. or equivalent grade, they include the following: carbon disulfide, potassium hydroxide, absolute ethanol, phenylacetic acid, hydrazine, diethyl ether, hydrochloric acid, benzylaldehyde, salicylaldehyde, pmethoxybenzylaldehyde, piperidine, 1,10-phenanthroline mono-hydrate and α, α' -bipyridyl. The metal salts CoCl₂.6H₂O, NiCl₂.6H₂O, CuCl₂.2H₂O and CdCl₂.2.5H₂O used were of general reagent grade.

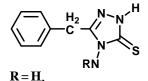
Preparation of the ligands ABT, BBT, HBHT, BMT

They were prepared following the literature procedure^[12-15]. ABT was prepared by the interaction of the potassium phenylacetyl dithiocarbazate salt and 95% hydrazine hydrate. BBT, HBHT and BMT were prepared by the interaction of ABT and the corresponding arylaldehyde {benzylaldehyde or salicylaldehyde or pmethoxybenzylaldehyde}.

ABT:m.p.180°C, yield 63%. The purity of the product ABT was checked by elemental analysis [Calcd.(Found)% for $C_9H_{10}N_4S$ (ABT) M.Wt.=206.27; C 52.41(52.13); H 4.89(4.71); N 27.16(27.50); S 15.55(15.73).

BBT:m.p. 182°C, yield 65%. The purity of BBT was checked by elemental analysis [Calcd.(Found)%

Inorganic CHEMISTRY An Indian Journal


Full Paper

for C₁₆H₁₄N₄S(BBT) M.Wt.=294.38; C 65.28 (64.98); H 4.79 (4.71); N 19.03 (18.93); S 10.89 (10.71)].

HBHT:m.p. 200°C, yiled 61%. The purity of HBHT was checked by elemental analysis [Calcd.(Found)% for $C_{16}H_{14}N_4$ SO(HBHT) M.Wt.=310.38; C 61.92(61.75); H 4.55(4.64); N 18.05(17.99); S 10.33 (9.88)].

BMT:m.p.191-192°C, yield 59%. The purity of BMT was checked by elemental analysis [Calcd.(Found)% for $C_{17}H_{16}N_4SO(BMT)$ M.Wt.=324.408; C 62.94(62.58); H 4.97(4.69); N 17.27(17.05); S 9.88(10.02)].

The structures of the primary ligand are given in Scheme 2.

Where,

4-amino-5-benzyl-4H-1,2,4-triazole-3-thione (ABT)

$$R = = C - \langle \cdot \rangle$$

5-benzyl-4-(benzylideneamino)-4H-1,2,4-triazole-3-thione (BBT) HO

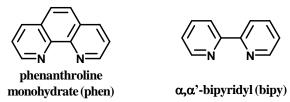
$$R = = C$$

5-benzyl-4-[(2-hydroxybenzylidene)amino]-4H-1,2,4-triazole-3-thione (HBHT)

5-benzyl-4-[(4-methoxybenzylidene)amino]-4H-1,2,4-triazole-3-thione (BMT)

Scheme 2 : Proposed structure for the primary ligands

Preparation of the binary complexes


They prepared according to the literature procedure^[12]. For this purpose Co(II), Ni(II), Cu(II) and Cd(II) complexes were synthesized by adding hot ethanol solution of the appropriate metal chloride (10⁻³M) dropwise to a hot ethanol solution of the appropriate ligand (10⁻³ and 2×10^{-3} M) in 1:1 and 1:2 molar ratios and the pH was adjusted to 3.5-4.5 using 5% NaOH solution with constant stirring for 2 hours. Immediate precipitate was obtained in all cases. The products so obtained were filtered through a sintered glass, washed with ethanol, ether and dried in *vacuum* over P_4O_{10} .

Preparation of the mixed ligand complexes

All the mixed ligand complexes were prepared following essentially the same procedure.

A hot methanolic solution (20mL) of the secondary ligand[1,10-phenanthroline monohydrate (phen) or α, α' -bipyridyl (bipy)] (1mmole), added dropewise with constant stirring to a hot refluxed methanolic solution (30mL) of the binary complex (1mmole). The reaction mixture obtained was stirred for an hour and refluxed for 6-8 hours. The obtained solution was evaporated to 50% of its original volume and on cooling the desired compound precipitated, filtered off, washed with methanol. The resulted mixed ligand complex was dried in vacuum over P_4O_{10} .

The structures of the secondary ligand are given in Scheme 3.

Scheme 3 : Proposed structure for the secondary ligands

Antimicrobial activity of the complexes

The filter paper disc method^[16,17] was performed using Sabouraud dextrose broth and Mueller Hinton broth. These agar media were inoculated with 0.5 mL of the 24hours liquid cultures containing 10⁷microorganism/mL. Filter paper discs (5 mm diameter) saturated with solutions of the complexes (concentration: 10mg/mL DMF) were placed on the indicated agar media. The incubation time was 24hours at 37°C for bacterial species: gram positive strains *Staphylococcus aureus* and gram-negative strains *Staphylococcus aureus* and gram-negative strains *Pseudomonas aeruginosa*. Discs with only DMF were used as control. Inhibitory activity was measured (in mm) as the diameter of the observed inhibition zones. The tests were repeated to confirm the findings and the average of the readings was taken into consideration.

Physical measurements

Electronic spectra were run on a Perkin Elmer UV/ VIS spectrophotometer Lambda 40 using 1-cm matched silica cells. IR spectra were obtained in KBr discs using 470 Shimadzu infrared spectrophotom-

153

eter(4000-400cm⁻¹). Conductivity measurements were carried out using CDM216 Meterlab conductivity meter in DMF solutions at 10^{-3} M concentrations at room temperature (~25°C). Magnetic susceptibility measurements were carried out at room temperature using a magnetic susceptibility balance of the type MSB-Auto. Molar susceptibilities were corrected for diamagnetism of the component atoms by the use of Pascal's constants. The calibrant used was Hg[Co(SCN)₄]. Thermogravimetry of the various complexes was carried out using a Shimadzu DTG 60-H thermal analyzer, at a heating rate of 10° C min⁻¹ in a nitrogen atmosphere.

REFERENCES

- [1] N.Eweiss, A.Bahajaj, E.Elsherbini; J.Heterocyclic. Chem., 23, 1451 (1986).
- [2] I.Awad, A.Abdel-Rahman, E.Bakite; J.Chem. Tech.and Biotech., 51, 433 (1991).
- [3] M.S.Yadawe, S.A.Patil; Tran.Met.Chem., 22, 220 (1997).
- [4] M.V.Kulkarni, V.D.Patil, V.N.Biradar, S.Nanjappa; Arch.Pharm., 34(5), 435 (1981).
- [5] T.Somorai, G.Szilagy, J.Reiter, E.Bozo, G.Nagy, J.Janaky; Eur.Pat.Appl.EP-15548, 81, (1985).
- [6] M.Ghassemzadeh, M.Tabatabaee, S.Soleimani, B.Neumuller; Z.Anorg.Allg.Chem., 631, 1871 (2005).
- [7] O.P.Pandey, S.K.Sengupta, S.C.Tripathi; Inorg. Chim.Acta, 90, 91 (1984).
- [8] S.N.Dubey, R.N.Handa, B.K.Vaid; Monatsh.Chem., 125, 395 (1994).
- [9] C.Preti, G.Tosi; Aust.J.Chem., 29, 543 (1976).
- [10] B.K.Gupta, D.S.Gupta, U.Agarwala; Bull.Chem. Soc.Japan., 51, 2724 (1978).
- [11] L.Labanauskas, V.Kalcas, E.Udrenaite, P.Gaidelis, A.Brukštus, V.Dauksas; Pharmazie., 56, 617 (2001).
- [12] S.A.El-Gyar, M.A.El-Gahami, A.Abd El-Sameh, S.A.Ibrahim; Polish J.Chem., 81, 1387 (2007).
- [13] A.Cansiz, M.Koparir, A.Demitdag; Molecules, 9, 204 (2004).
- [14] K.C.Ragenovic, V.Dimova, V.Kakurinov, D.G.Molnar, A.Buzarovska; Molecules, 6, 815 (2001).

- [15] J.R.Reid, D.Heindel; J.Heterocyclic.Chem., 13, 925 (1976).
- [16] S.Rollas, N.Kalyoncuoglu, D.Sur-Altiner, Y.Yegenoglu; Pharmazie., 48, 308 (1993).
- [17] A.W.Bauer, W.W.M.Kirby, J.C.Sherris, M.Turck; Am.J.Clin.Pathol., 45, 493 (1966).
- [18] W.J.Geary; Coord.Chem.Rev., 7, 81 (1971).
- [19] Mudasir, N.Yoshioka, H.Inoue; Transition Met.Chem., 24, 210 (1999).
- [20] A.A.Schilt, C.R.Taylor; J.Inorg.Nucl.Chem., 9, 211 (1959).
- [21] C.M.M.Vallete, E.R.Clavijo, F.Mendizabal, W.Zamudio, R.Baraona, G.Diaz; Vib.Spectroscopy, 12, 37 (1996).
- [22] S.Sen, S.Mitra, P.Kundu, K.M.Saha, C.Kruger, J.Bruckmann; Polyhedron, 16, 2475 (1997).
- [23] C.Su, N.Tang, M.Tan, K.Yu; Polyhedron, 15, 233 (1996).
- [24] K.Nakamoto, J.Fujita, A.R.Condrote, Y.Morimoto; J.Chem.Phys., 39, 423 (1963).
- [25] J.Morizzi, M.Hobday, C.Rix; Inorg.Chim.Acta, 320, 67 (2001).
- [26] K.Nakamoto; 'Infrared and Raman Spectra of Inorganic and Coordination Compounds' 3rd, Ed., John Wiley: New York, (1978).
- [27] B.Bosnich; Inorg.Chem., 7, 2379 (1968).
- [28] A.R.Krause; Inorg.Chim.Acta, 22, 209 (1977).
- [29] P.B.Sullivan, J.D.Salmon, J.T.Mever; Inorg.Chem., 17, 3334 (1978).
- [30] H.R.Fabian, M.D.Klassen, W.R.Sonntag; Inorg.Chem., 19, 1977 (1980).
- [31] A.B.P.Lever; 'Inorganic Electronic Spectroscopy.' Elsevier Amsterdam 4th, Ed., (1984).
- [32] M.Kishita, M.Inoue, M.Kubo; Inorg.Chem., 3, 237 (1964).
- [33] S.N.Dubey, R.N.Dubey, B.K.Vaid; Monatshefte Fur Chem., 125, 395 (1994).
- [34] R.L.Carlin; Magnetochemistry. Springer, Berlin, (1986).
- [**35**] A.Earnshow; Introduction to Magnetochemistry. Academic press, London, (**1968**).
- [36] B.N.Figgis, J.Lewis; 'Modern Coordination Chemistry.' Edited by J.Lewis, R.G.Wilkins Interscience: New York, 403 and 406, (1960).
- [37] S.N.Dubey, B.Kaushik; Indian J.Chem.A, 24, 950 (1985).

