December 2009

Volume 4 Issue 4

Inorganic CHEMISTRY

Trade Science Inc.

An Indian Journal

- Short Communication

ICAIJ, 4(4), 2009 [191-193]

Synthesis and characterization of copper (II), cobalt (II) and nickel (II) complexes with Schiff bases

A.Ramachandra^{1,*}, Nirdosh Patil², Fazlur Rahaman², V.H.Kulkarni², S.D.Angadi² ¹Kottureshwara College, Kottur-583 134, Karnataka, (INDIA) ²Department of Chemistry, Gulbarga University, Gulbarga – 585106, Karnataka, (INDIA) E-mail: akkuram@yahoo.co.in *Received: 15th August, 2009 ; Accepted: 25th August, 2009*

ABSTRACT

A few complexes of Cu(II), Co(II) and Ni(II) have been prepared by reacting with their metal (II) chlorides with 2-(phenyl/4-methylphenylimino)-1H-indene-1, 3(2H)-dione and 2-[(2-hydroxyphenyl)imino]-1H-inene-1, 3(2H)-dione(Schiff bases) in alcoholic medium. All the chelates are coloured solids and are non-electrolytic in DMF and DMSO. Elemental analysis confirms to the 1:2-stoichiometry of the type ML_2 . The IR spectra of the ligands and the complexes suggest the involvement of o-hydroxy group, carbonyl group and azomethine group in bonding through oxygen and nitrogen atoms respectively. The electronic spectra and magnetic data suggest the octahedral and square planar configuration. © 2009 Trade Science Inc. - INDIA

INTRODUCTION

The literature^[1-6] probe indicates that there is scanty information on the reaction of ninhydrin with aromatic amines and their complexes. Hence, it is thought worth while to prepare of few complexes of transition metals viz. Co(II), Ni(II) and Cu(II) with the Schiff bases formed of ninhydrin and aromatic amines.

In view of the considerable physiological and biological importance of the ninhydrin and the Schiff bases^[7-12] it is proposed to prepare some ligands and the complexes.

EXPERIMENTAL

Synthesis of ligands

A mixture of (0.01mole) and various amines

(0.02mole) containing a few drops of concentrate hydrochloric acid was refluxed in the alcoholic medium for 5hrs on a steam bath. The reaction mixture was cooled to room temperature the Schiff bases separated were filtered, washed with distilled water and recrystallised from alcohol/benzene.

Synthesis of complexes

To a (0.02mol) ligand in alcohol (0.01mol) an alcoholic solution of metal chloride (Cu, Co and Ni) was added and refluxed for about 4hr on a steam bath [In the case ligand for 2.5g of sodium acetate (anhydrous) was added]. The resulting mixture was further refluxed for an hour. The reaction mixture was transferred into a beaker and the precipitate of complex was initiated by adding a few ml of distilled water. The precipitated complex was filtered, washed with distilled water, then with ethanol and dried over fused calcium chloride. Short Communication

Electronic data

Inorganic CHEMIST

The broadband observed in the electronic spectra

of Cu(II) complexes in the region 15390-15650 cm⁻¹. The nature and shape of band maxima compare well with the characteristic square planar Cu(II) complexes. Hence these Cu(II) complexes are square planar configuration.

The electronic spectra of Ni(II) complexes observed in the region 15385-16000 cm⁻¹ may be attribute to the ¹A \rightarrow ¹A_{2g} transition. The band due to the ¹A \rightarrow ¹B_{1g} appears around 23529 cm⁻¹. This band has high intensity and may be due to the overlaying of M–L charge transfer bands. These observations suggest that these Ni(II) complexes of ligands I, II and III are square planar configuration. The electronic spectra of Co(II) complexes observed around 15385 cm⁻¹ and 20000 cm⁻¹ are assigned to ⁴T_{1g} \rightarrow ⁴A_{2g}(F) and ⁴T_{1g} \rightarrow ⁴T_{1g}(P) transition, respectively suggesting an octahedral geometry for Co(II) complexes.

All the complexes are dark coloured amorphous substances. Soluble in DMSO and DMF. The elemental analysis confirms to the 1:2 stoichiometry of the type ML₂. The molar conductance values in DMF and DMSO (10^{-3} mole) are in the range of $2.16 - 4.24 \Omega$ cm² mol⁻¹ indicating that all these chelates are non-electrolytes. In the IR spectra the frequency shift, splitting and change in the intensity of the ligand fundamental frequencies caused by the complex formation are considered. The analytical data suggest that 1:2 stoichiometry for these complexes. The complexes are non-electrolyte in DMSO and DMF. The electronic and magnetic studies probed together project the following tentative structures for the complexes where in Cu(II) and Ni(II) exhibit square planar configuration and Co(II) shows coordination number of six.

RESULTS AND DISCUSSION

Comp. No.	Empirical Formula/ Molecular Formula	M.P. Yield	Elemental Analysis (%)			IL off.	Molar. Cond	
		(⁰ C), (%)	Μ	Ν	Cl	(B.M.)	$(\lambda_{\rm M})$ ohm ⁻¹ cm ² mol ⁻¹	Colour
C1	$Co(C_{30}H_{18}N_2O_4)Cl_2$	289 (72)	9.632 (9.824)	4.49 (4.459)	11.82 (11.80)	5.1	8.0	Green
C2	$Ni(C_{30}H_{18}N_2O_4)Cl_2$	248(d) (62)	9.80 (9.780)	4.50 (4.46)	11.90 (11.82)	Diamag.	3.7	Dark Brown
C3	$Cu(C_{30}H_{18}N_2O_4)Cl_2$	253 (67)	10.62 (10.51)	4.30 (4.276)	11.74 (11.73)	1.90	2.0	Brown
C4	$Co(C_{32}H_{22}N_2O_4)Cl_2$	252(d) (53)	9.390 (9.386)	4.65 (4.667)	11.32 (11.29)	5.34	8.0	Yellow
C5	$Ni(C_{32}H_{22}N_2O_4)Cl_2$	>300 (67)	9.365 (9.350)	4.67 (4.669)	12.56 (12.46)	Diamag.		Yellow
		_, · · · / · ,		· · · · · ·				Continued

Short Communication

Comp.	Empirical Formula/ Molecular Formula	M.P.	Elemental Analysis (%)			Laff.	Molar. Cond	
No.		Yield (°C), (%)	Μ	Ν	Cl	(B.M.)	$(\lambda_{\rm M})$ ohm ⁻¹ cm ² mol ⁻¹	Colour
C6	$Cu(C_{32}H_{22}N_2O_4)Cl_2$	>300	10.09	4.64	11.13	1 05	2.0	Yellow
		(53)	(10.04)	(4.632)	(11.21)	1.65		
C7	$Co(C_{30}H_{16}N_2O_6)$	245	10.56	5.003		5.0		Reddish
		(58)	(10.54)	(5.001)				Brown
C8	$Ni(C_{30}H_{16}N_2O_6)$	276	10.52	5.03		Diamag.	3.2	Dark
		(55)	(10.50)	(5.01)				Brown
C9	$Cu(C_{30}H_{16}N_2O_6)$	240	11.27	4.89		1.79	2.9	Dark
		(60)	(11.25)	(4.96)				Brown

TABLE 2 : IR spectral assignments of ligands L¹, L², L³ and its complexes.

Ligand / Complex	ОН	C=O	C=N	C-0	M-O	M-N	M-Cl
Ligand (L ¹)		1690					
Cu-complex (C ₁)		1668	1620		560	417	311
Co-complex (C ₂)		1667	1587		571	411	317
Ni-complex (C ₃)		1665	1585		555	420	314
Ligand (L^2)		1690					
Cu-complex (C ₄)		1659	1598		568	415	319
Co-complex (C_5)		1666	1604		560	422	309
Ni-complex (C_6)		1660	1581		565	427	310
Ligand (L ³)	3432	1680	1584	1285			
Cu-complex (C ₇)		1663	1588	1320	571	421	
Co-complex (C ₈)		1662	1581	1350	557	428	
Ni-complex (C ₉)		1664	1586	1335	552	425	

REFERENCES

- F.A.Cotton, G.Wilkinson; 'Advanced Inorganic Chemistry', 2nd Ed, Interscience, New York (1965).
- [2] A.K.Battacharya; J.Indian Chem.Soc., 59, 515 (1982).
- [3] B.M.Badiger, S.A.Patil, S.D.Angadi, V.H.Kulkarni; Synth.React.Inorg.Mat.Org.Chem., 16, 201 (1986).
- [4] S.A.Patil, V.H.Kulkarni; J.Trans.Met.Chem., 8, 238 (1983).
- [5] N.G.Desai, Suresh, S.D.Angadi, D.R.Gaokar, V.H.Kulkarni; Rev.Roum.Chem., 38, 53 (1993).
- [6] A.Chakravarty; Coord.Chem.Rev, 13, 1 (1974).

- [7] L.J.Bellamy; 'IR Spectra of complex, Organic molecules', 3rd Ed, Chapman and Hall London (1975).
- [8] S.A.Patil, V.H.Kulkarni; Inorg.Chem.Acta, 73, 125 (1983).
- [9] K.Shankar, R.Rohini, P.M.Reddy, V.Ravinder; Iternational J.ChemTech Res., 1, 300 (2009).
- [10] Nurþen Altuntaþ Öztaþ, Gülgün Yeniþehirli, Nilgün Ancýn, Selma Gül Öztaþ, Yusuf Özcan, Semra Ýde; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(5), 929 (2009).
- [11] K.Shivakumar, Shashidhar, P.Vithal Reddy, M.B.Halli; Journal of Coordination Chemistry, 61(14), 2274 (2008).
- [12] Ezzat M.Soliman; Analytical Lett., 31(2), 299 (1998).

