

SYNTHESIS AND CHARACTERIZATION OF AMINO ACID SUBSTITUTED CYCLOTRIPHOSPHAZENIDES

SANTOSH KUMAR SINGH and S. P. S. JADON^{*}

Department of Chemistry, S. V. College, ALIGARH - 202001 (U.P.) INDIA

ABSTRACT

The amino acid, lysine, substituted compound of $(NPCl_2)_3$ was synthesized. The complex was studied with the help of Mass, FT-IR and microanalysis assigning its molecular formula as - $(PN)_3[OOC(CH_2)_5NH_2]_6$

Key words: Phosphozenides, Amino acid, Lysine.

INTRODUCTION

Due to N atom $(NPCl_2)_3$ molecule has much coordinating property and hence, it has formed a large number of complexes with metals¹⁻⁶. On the other hand, there is six symmetric chlorine atoms, which perform substitution reaction with covalent compounds⁷. These substituted and adduct derivatives of $(NPCl_2)_3$ have industrial, pharmaceutical and biological importance such as, the complexes of $(NPCl_2)_3$ with Cu, Fe and Co were found bactericidal⁸⁻¹⁰.

Adducts of (NPCl₂)₃ with phenoxy substituted compound are hydraulic lubricant¹¹. Polyorganophosphazenes have fire proofing agents¹², plastics¹³ and biological properties,¹⁴ while polymethoxy, ethoxy, amino and aryl substituted polyphosphazene are bioactive¹⁵. Pt (II) complex of (NPCl₂)₃ has antitumor activities¹⁶. Polyaminophosphazenes were found good germicides¹⁷⁻²⁰. Water soluble cyclotriphos-phazenes (diamine) Pt (II) conjugated drugs were also found to have antitumor activity²¹.

EXPERIMENTAL

Methodology

Chemicals: Phosphorous pentachloride, amino acids (Lysine), ammonium chloride, chloro-

^{*}Author for correspondence; E-mail: sps_jadon@yahoo.co.in

benzene, ether, alcohol, etc. doubly distilled were used.

Preparation of hexachlorocyclotriphosphazene

 $(NPCl_2)_3$ was prepared by the refluxing an equimolar mixture of PCl₅ and NH₄Cl in chlorobenzene at 140-160°C for 7-8 hours. The unreacted NH₄Cl was removed by filtration and $(NPCl_2)_3$ was obtained, after distillation under reduced pressure.

Preparation of amino acid (Lysine) substituted phosphazenides

The compound of lysine with $(NPCl_2)_3$ was prepared by the refluxing a mixture of $(NPCl_2)_3$ and lysine (100 mg of each in 1 : 1) at 150-165°C for 7-9 hours using C₆H₅Cl as a solvent. A brownish precipitate was obtained, which was filtered, washed with chlorobenzene, ether and alcohol. Dried product was stored in vacuum desiccator over fused CaCl₂.

Instrumental studies

A Perkin-Elmer FT-IR spectrophotometer was used to record the IR spectrum (4000-500 cm⁻¹). The DART mass spectrum was recorded on a JEOL-Accutof JMS-T100lc Mass spectrometer having a DART source using helium lamp at 350°C. Microanalysis for constitutent elements was carried out from CDRI, Lucknow. Molecular weight was determined by Rast's method.

Observation

The newly synthesized compound was brownish in color, solid, soluble in water and having melting point 350-360°C.

Fig. 1: IR Spectrum of compound

Table 1: IR spectral data

Frequency of band (cm ⁻¹)	Assigned bands	Force constants (Dyne/cm ²)
3427.0 (b)	=NH	7.87 x 10 ⁵
2363.1 (s)	-P=N	6.5 x 10 ⁵
1651.9 (b,s)	CO	3.21 x 10 ⁵
1405.0 - 1466.2 (w,b)	РО	_
672.1 – 543.0 (b)	-PN-	_

Fig. 2: Mass spectrum of compound

Table	2:	Mass	spectral	data
-------	----	------	----------	------

m/z	Fragments		Remarks
73	P_2N	(M-3)	
103	P_2N_3	(M-3)	Base line peak
128	$C_3H_4PN_2O_2$	(M-3)	
202	$C_6H_{13}PN_2O_2$	(M-3)	
247	$C_6H_{13}P_3N_3O_2$	(M-3)	
304	(CHCOO) ₃ N ₃ I	$P_3(M-3)$	
533	(CHCOO) ₃ (NI	$H_2CH_2COO)_3P_3N_3(M-3)$	
919	[NH ₂ (CH ₂) ₅ PC	$COO_{6}P_{3}N_{3}(M-3)$	Parent peak

RESULTS AND DISCUSSION

- (i) On the basis of quantitative estimations, % found, are C-46.32, N-13.7, O-20.98 and H-7.86 and molecular weight is 915 mol⁻¹. The compound may be assigned the structure (Fig. 3), which was supported by peak (m/z -919) in its mass spectrum and microanalysis.
- (ii) This compound formation is supported by frequencies observed in its IR spectrum having the frequencies at 543.0-672.1(b)²², 1405.0-1466.2 (w,b), 1651.9 (b,s), 2363.1 (s) and 3427.0 (b) (Table 1), corresponding to five -P-N-, P-O, CO, -P = N and NH bands. The occurrence of vibrations for P-O and C-O linked to P-O group indicates that P-Cl₂ has reacted with COOH group of amino acid (lysine) through oxygen, due to affinity of phosphorous to oxygen. The value of force constant inferred the P-N and P = N groups
- (iii) Mass spectroscopy of this compound has supported the structure of compound as $(NP)_3 [OOC(CH_2)_5NH_2]_6$. The most probable fragments are given in Table 2.

The formation of adduct may be explained by the following reaction -

$$P_3N_3Cl_6 + 6 \text{ NH}_2(CH_2)_4CH(NH_2)COOH P_3 \rightarrow P_3N_3[NH_2(CH_2)_5COO]_6 + N_2 + 4 \text{ NH}_3 + 6 \text{ HCl}$$

Hence, the structure of the adduct may be expressed as -

Fig. 3: Proposed structure of the compound P₃N₃[NH₂(CH₂)₅COO]₆

ACKNOWLEDGEMENT

We express our thanks to the Director, CDRI, Lucknow, for providing the instrumental facilities and UGC for providing financial support for a major research project.

REFERENCES

1. T. Luther, A. Stevart and F. L. R. Federick, J. Appl. Polymer Sci., **29(4)**, 3439 (2001).

- 2. B. P. Barnwal, S. S. Das and U. Furia, Res. J. Chem. Environ., 5(2), 55 (2001).
- 3. Y. C. Leeching and S. Yei. Sci., Appl. 7 (2001).
- 4. N. Stefan and M. Bestbergis, Eur. Chem. Appl., 9 (2002).
- 5. C. W. Allen and S. D. Worley, Inorg. Chem., 38, 5187 (1999).
- 6. H. C. Balk, I. C. Yangho and Sohan Yoounsoo, Anticancer Drugs, **11**(9), 715 (2000).
- 7. R. J. A. Otto and F. G. Sherif and L. F. Audrieth, J. Am. Chem. Soc., 82528 (1960).
- 8. K. Sulk, Bull. Korean Chem. Soc., **22(11)**, 1243 (2001).
- 9. S. P. S. Jadon, Asian J. Chem. Soc. 15(1), 151 (2003); 17, 1312 (2005).
- 10. Y. P. Singh and S. P. S. Jadon, Asian J. Chem. **19(4)**, 3280 (2007).
- 11. Niklalank Jain and S. P. S. Jadon, Asian J. Chem., **18**(1), 730 (2006).
- J. Luten, J. H. Vansteenis, R. V. Someren and W. E. Hennik, J. Controlled Disease, 89, 483-497 (2003).
- 13. Erol Cil, M. Arrlan and A. O. Gorgulu, Canad. J. Chem., 83(12), 2039 (2005).
- 14. C. N. Myer and C. W. Allen, Inorg. Chem., **41**(1), 60 (2002).
- 15. A. Luther, Fthomas and P. W. John, J. Appl. Polym. Sci., 86, 189-90 (2002).
- 16. H. Baek, Y. Cho Lee, O. K. Chong and S. Y. Sohn, Anticancer Drugs, **11(9)**, 715 (2000).
- 17. Yangha Cho, Y. S. Sohn and Moo Jin, J. Polymer Sci., **31**, 3397 (2003).
- 18. S. J. Coles, D. B. Davies, R. A. Shaw and H. Lbisoglu, Acta. Crystr., 63, 52 (2007).
- 19. Y. P. Singh and S. P. S. Jadon, Int. J. Chem. Sci., 4(4), 959 (2006).
- 20. Y. P. Singh S. M. Atif and S. P. S. Jadon, Int. J. Chem. Sci., 5(2), 807 (2007).
- 21. J. K. Han, S. T. Kim, H. J. Kim and Y. K. Kwon, J. Nano, Sci. Nanotechnol., 6(11), 3446 (2006).
- 22. Atul Vashistha and S. P. S. Jadon, Int. J. Chem. Sci., 7(3), 2151-2157 (2009).

Revised : 28.11.2010

Accepted : 01.12.2010