ISSN: 0974 - 7516

Volume 10 Issue 12

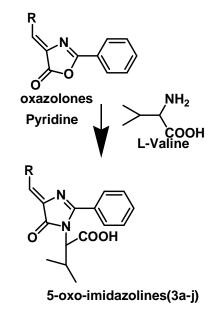
OCAIJ, 10(12), 2014 [494-495]

Synthesis and biological screening of 1-N-2'-(3'methylbutanoicacid)-2-phenyl-4-arylidine-5-oxo-imidazolines

C.M.Pandit², P.V.Bhatt², M.K.Pandya², A.Baldev², D.M.Purohit^{1*} ¹Shree M.N.Virani Science College, Kalawad Road, Rajkot-360005, (Gujarat), (INDIA) ²RK.University, Kasturbadham, Rajkot, (INDIA) E-mail: purohitdm@yahoo.com

ABSTRACT

1-N-2'-(3'-Methylbutanoicacid)-2-phenyl-4-arylidine-5-oxo-imidazolines (**3a-j**) have been synthesized by the condensation of L-valine with different oxazolones. The products have been assayed for their antimicrobial scrrening against Gram+ve and Gram-ve bacteria. Some of the products showed moderate activity compared with known standard drug viz. penicillin at same concentration $50\mu g/ml$. The structure of the products have been elucidated by ¹H NMR, IR, Mass spectral data. © 2014 Trade Science Inc. - INDIA


INTRODUCTION

L-Valine derivatives play a vital role largely due to the wide ranging of biological activities. L-Valine is known to exhibit wide spectrum of biodynamic activity. Taking into consideration diverse biodynamic activities like analgesics^[1], antibacterial^[2], antidiabatic^[3], antifungal^[4], antiulcer^[5,6], antihistamine^[7], anthelmitic^[8], antiinflammatory^[9] etc. In the fact of these interesting biological activities, in view of getting to synthesized some new imidazoline^[10-13] derivatives bearing L-Valine. 5-Oxo-imidazoline derivatives have been synthesized by the condensation of L-valine with different oxazolones. All the products (**3a-j**) were assigned the IR, HNMR, Mass spectra, and TLC. The physical data and antimicrobial activities are represented in TABLE 1.

ANTIMICROBIALACTIVITY

All the products (**3a-j**) were tested for their antimicrobial activity by cup-plate method^[14] against the Gram positive bacteria Bacillus subtillis, Gram negative bacteria Escherichia coli at a concentration of $50\mu g/ml$, us-

ing DMSO as a solvent. After 24hrs of incubation at 37°C, the zone of inhibition were measured in mm. The activity was compared with known standard drug viz. penicillin at the same concentration $50\mu g/ml$. Which is represented in TABLE 1. All the synthesized compounds (**3a-j**) showed moderate to good and remarkable ac-

495

Comp.	R	Molecular formula	M.P. °C	% Yield	Antibacterial	
					B.Subtillis	E.coli
3a	C ₆ H ₅ -	$C_{21}H_{20}O_3N_2$	145	65.32	16	14
3b	C ₆ H ₅ -CH=CH-	$C_{23}H_{21}O_3N_2$	106	71.13	15	15
3c	$4-OH-C_6H_4-$	$C_{21}H_{20}O_4N_2$	115	60.65	15	16
3d	4-OH,3-OCH ₃ -C ₆ H ₃	$C_{22}H_{22}O_5N_2$	132	69.15	18	16
3e	3,4,5- (OCH ₃) ₃ -C ₆ H ₂	$C_{24}H_{26}O_6N_2$	108	62.54	16	17
3f	2-NO ₂ -C ₆ H ₄ -	$C_{21}H_{19}O_5N_3$	123	68.26	17	15
3g	3-NO ₂ -C ₆ H ₄ -	$C_{21}H_{19}O_5N_3$	116	58.64	16	18
3h	4-Br-C ₆ H ₄ -	$C_{21}H_{19}O_3N_2Br$	135	53.12	15	18
3i	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{23}H_{26}O_5N_2$	140	64.35	17	16
3j	$2-Cl-C_6H_4-$	$C_{21}H_{19}O_3N_2Cl$	112	70.29	16	16
Standard drug : Penicillin					16	17

TABLE 1

tivities with known standard drugs at same concentration, which is represented in TABLE 1.

Synthesis of 1-N-2'-(3'-methylbutanoicacid)-2-phenyl-4-(4'-bromobenzylidine)-5-oxo-imidazolines(h)

A mixture of 2-Phenyl—(4'-Bromobenzylidine)-5oxo-azalactone (0.01M) and L-valine (0.01) in 10 ml pyridine was refluxed on oil bath for 6 hrs. Resulting mass was poured into crushed ice and neutralized with dil. HCl, filtered and the product was recrystallized from 1, 4 dioxane. Yield 53%, M.P. 135.; ¹H NMR 1.01(6H, d, CH₃), 1.6 (1H, m, -CH) 2.78(1H, d,-CH), 7.19-7.3(3H, t, Ar-H), 7.3-7.5(2H, d, Ar-H), 7.5-7.6(4H, d, Ar-H),10.0(1H, s, -COOH).; IR (KBr) : 2930 (C-H str.asym), 2857 (C-H str.sym), 3046(C-H str.aromatic), 1563(C=C str.aromatic), 1226(C-O-C str.), 1097(C-N str.), 1624(C=N str.), 1727(C=O str.).; (M/Z) at 428, 408, 393, 384, 364, 339, 326, 309, 297, 247, 169, 155, 105, 90, 57, 43.

RESULTS

1-N-2'-(3'-Methylbutanoicacid)-2-phenyl-4arylidine-5-oxo-imidazolines (**3a-j**) were synthesized and compounds (**3a**), (**3d**), (**3e**), (**3f**), (**3g**), (**3i**), (**3j**), (**3h**) ; showed good remarkable antibacterial activity with compare to known standard drug penicillin at same concentration 50µg/ml.

ACKNOWLEDGEMENTS

The authors are thankful to management and prin-

cipal shree M. & N. Virani science college, Rajkot and RK. University, Kasturbadham for providing research facilities.

REFERENCES

- [1] Vos C.De et al.; Ann.Allexgy, 59, 278 (1987).
- [2] Baltyl et al.; J.Org.Chem., 14, 775 (1949).
- [3] F.F.Roth, W.M.Govier; J.Pharmcol.Exp.Ther., 124, 347 (1958).
- [4] Hanna; Toxics Appl.Pharmcol., 3, 3936 (1961).
- [5] J.Hoffmann et al.; Pharma.Sci., 72, 1342 (1983).
- [6] Tashio Pharmaceutical Co. Ltd. Japan Koho JP,59,12,094 (84,12,094) (C1A 61k31/215); Chem.Abstr., 101, 54722j (1984).
- [7] M.Puttemans et al.; J.Liqchromato., 7, 2237 (1984).
- [8] J.C.Teulade, G,Grassy, J.P.Girard, J.P.Chapat, M.M.S.de Buochberg; Eur.J.Med.Chem., 13, 271 (1978).
- [9] P.Ducommun, S.D.Lehmann; Rev.Can.Boil, 11298, (1952); Chem.Abstr., 47, 1292f (1953).
- [10] D.M.Purohit, V.H.Shah; Heterocyclic Communications, 3(2), 139-145 (1997).
- [11] D.M.Purohit, V.H.Shah; I.J.H.C., 8, Jul-Sept, 67-70 (1998).
- [12] D.M.Purohit, V.H.Shah; I.J.H.C., 8, Jan-March, 213-216 (1999).
- [13] Murlidhar P.Wadekar, Arun R.Raut, Gopalkrushna H.Murhekar; Der.Pharma.Chemica., 2(1), 76-81 (2010).
- [14] A.L.Barry; The Antimicrobial Succeptibility Test, Principal and Practices, Editedby Illus Lea, Febiger, 180, Bio.Abst., 64, 25183 (1976).
- [15] Mohammad Reza Poor Heravi; Journal of University of Chemical Technology and metallurgy, 44(1), 86-90 (2009).

