Volume 8 Issue 8

Organic CHEMISTRY An Indian Journal

Trade Science Inc.

- Short Communication

OCAIJ, 8(8), 2012 [283-285]

Synthesis and biological screening of 1-aroyl/aryl sulphonamido aminoindan

V.P.Gohel, V.N.Patolia*

Kamani Science & Prataprai Arts College, Chemistry Department, Amreli, Gujarat, (INDIA) Received: 4th December, 2011 ; Accepted: 15th December, 2011

ABSTRACT

1-aroyl aminoindan (2a-2j) and 1-arylsulphonamido indan have been synthesized. The product have been assayed for their biological screening against Gram +ve bacteria, Gram -ve bacteria and fungi. Some of the products showed moderate activity compare with known standard drugs. The products have been characterised by IR, ¹H NMR, Mass spectral studies and elemental analysis. © 2012 Trade Science Inc. - INDIA

KEYWORDS

Aryl amide; Sulphonamides.

INTRODUCTION

Arylamide and sulphonamide derivatives showed good biological activity e.g. antimicrobial^[1], anti-inflammatory^[2], analgesic^[3]etc. In view of getting better therapeutic agents, we have synthesised arylamide (2a-2j) and sulphonamides (3a-3j). The products were assigned by IR, ¹H NMR, Mass spectral data, TLC and elemental analysis. The physical data and biological screening with MIC are represented in TABLE 1 and comparable MIC of synthesised product compare with known standard drugs are represented in TABLE 2.

BIOLOGICAL SCREENING

The antimicrobial activity was determined by broth dilution method^[4,5] using DMSO as a solvent. The antibacterial activity was taken against Gram positive bacteria *S.aureus*, *S.pyogenes*, Gram negative bacteria *E.coli.*, *P.aeruginosa* and anti fungal activity against *Candida albicans*. The minimum inhibition concentration (MIC) was measured in µg/ml which is represented in TABLE 1. The activity was compared with known standard drugs viz. Ampicillin, Chloramphenicol, Ciprofloxacin and Griseofulvin which is represented in TABLE 2 & TABLE 3

EXPERIMENTAL

All the melting points were measured by open glass capillary method and are uncorrected. IR absorption spectra (in cm-1) were recorded on a Shimadzu IR spectrophotometer using KBr pellet method, ¹H NMR spectra on Bruker (500MHz) spectrometer using DMSO-d6 solvent, TMS as internal standard (chemical shift in δ ppm) and mass spectra on Joel 300eV. The purity of the compounds was routinely checked by TLC using silica gel-G.

Synthesis of 1-N-(4'-methoxy benzoylamino) indan (2j)

A mixture of 1-aminoindan (1.33g,0.01M) and 4methoxy benzoylchloride (1.70g,0.01M) in dry pyridine (20ml) was refluxed for 2 hrs. The resulting mixture was

Short Communication **REACTION SCHEME**

poured into crushed ice and neutralized with HCl. The product was filtered, washed with cold water and crystallized from methanol. Yield:61.24%, mp:147°C (Found:C:76.36; H:6.30; N:5.21%; C₁₇ H₁₇ O₂N Cald. C:76.40; H:6.36; N:5.24%) IR (KBr) (cm⁻¹): 2937 (C-H str.asym), 2839 (C-H str.sym), 3022 (C-H str.aromatic), 1479, 1537 (C=C ring skeletal), 1627 (>C=Ostr), 3261 (N-H str.), 1249 (C-O-C str.) ¹H NMR (δppm):3.8 (s,3H,-OCH3), 1.9-2.9 (m,5H,C-H), 7.1-7.9 (m,8H,Ar-H) m/z:267, 152, 135, 117, 107, 92, 77, 65, 44

Similarly other arylamide (2a-2j) were synthesised and their physical data are recorded in TABLE 1.

Synthesis of 1-N- (5'-carboxy-2'-methoxy benzene sulphonamido) indan (3b)

A mixture of 1-aminoindan (1.33g,0.001M) and 3- (chloro sulphonyl)-4-methoxy benzoic acid (3.47g,0.01M) in presence of pyridine (5ml) was refluxed. The reaction mixture was poured into crushed ice and filtered, washed with water and recrystallized

TABLE 1 : The physical data	and biological screening	of compounds (2a-2j) and (3a-3j)
1 1		1 1 1	· · · · · · · · · · · · · · · · · · ·

	R	mp°C	Antimicrobial Activity (MIC in µg/ml)				Antifungal Activity	%of	
Compd.			Gram +ve bacteria		Gram -ve bacteria		(MIC in µg/ml)	Nitrogen	
			S.aurius	S.pyogenes	E.coli	P.aeruginosa	C.albicans	Cald.	Found
2a	C ₆ H ₅ -	138	500	500	250	250	250	5.90	5.88
2b	C ₆ H ₅ -CH=CH-	102	500	500	100	100	1000	5.32	5.31
2c	2Cl-C ₆ H ₄ -	113	100	100	200	200	1000	5.15	5,11
2d	$4-Cl-C_6H_4-$	208	200	200	62.5	100	200	5.15	5.14
2e	2-CH ₃ - C ₆ H ₄ -	84	250	250	200	200	500	5.57	5.52
2f	3-CH ₃ - C ₆ H ₄ -	146	250	250	250	250	500	5,57	5.54
2g	4-CH ₃ - C ₆ H ₄ -	109	200	200	100	100	250	5.57	5.56
2h	3-NO ₂ - C ₆ H ₄ -	110	62.5	100	200	250	1000	9.92	9.89
2i	4-NO ₂ - C ₆ H ₄ -	117	200	200	200	250	1000	9.92	9.90
2j	4-OCH ₃ - C ₆ H ₄ -	147	250	250	250	200	250	5.24	5.19
3a	3-COOH- C ₆ H ₄ -	112	200	200	250	200	250	4.41	4.40
3b	2-OCH ₃ ,5-COOH- C ₆ H ₃ -	114	100	100	200	250	1000	4.06	3.98
3c	4-OH,3-COOH- C ₆ H ₃	173	200	200	100	100	1000	4.20	4.18
3d	4-Cl,3-COOH- C ₆ H ₃	104	200	200	62.5	100	500	3.98	3.97
3e	3-CH=CHCOOH- C ₆ H ₄ -	98	250	250	200	62.5	200	4.08	4.04
3f	4-NH ₂ ,3-COOH- C ₆ H ₃	164	250	250	200	200	200	8.43	8.40
3g	4-NHCOCH ₃ - C ₆ H ₄ -	153	250	250	100	100	100	8.43	8.42
3h	4-CH ₂ COOH- C ₆ H ₄ -	62	100	100	200	200	250	4.22	4.18
3i	2-CH ₃ ,5-COOH- C ₆ H ₃ -	118	200	200	250	250	500	4.22	4.17
3ј	3-CH ₃ ,5-COOH- C ₆ H ₃	78	100	100	100	100	100	4.22	4.19

Organic CHEMIS.

Short Communication

from methanol. Yield: 72.88%, mp:114°C (Found: C:58.73, H:4.87, N:3, 98%; C_{17} H₁₇ O₅ SN; Cald. C:58.78, H:4.89; N:4.06%) IR (KBr) (cm⁻¹): 2937 (C-H str. asym.), 2848 (C-H str. sym.), 3022 (C-H str. aromatic), 1489 (C=C ring skeletal), 3273 (N-H str.),1639 (C=O str.), 3100-3300 (O-H str.), 1323 (S=O str.asym.), 1159 (S=O str. sym.), 1273 (C-O-C

str.) 1H NMR (δppm):3.9 (s,3H,-OCH3), 9.0 (s,1H,-COOH), 7.1-7.9 (m,8H,Ar-H), 8.4 (s,1H,N-H), 1.9-2.9 (m,5H,C-H) m/z: 347, 231, 214, 133, 132, 116, 104, 89, 77, 57

Similarly other sulphonamides (3a-3j) were synthesised and their physical data are recorded in TABLE 2.

Compound	S.aureus	S.pyogenes	E.coli	P.aeruginosa	C.albicans
(2a-2j)	2c, 2e, 2f, 2g, 2h, 2i, 2d, 2j	2c, 2i	2b, 2e, 2h	2b, 2e, 2h	2a, 2e, 2f, 2g, 2h, 2j
(3a-3j)	3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j	3b, 3h, 3j	3c, 3d, 3g, 3j	3c, 3d, 3g, 3j	3a, 3d, 3e, 3f, 3g, 3h, 3i, 3j

TABLE 3 : Activity of standard drugs (MIC in µg/ml):							
Sr. No.	Drugs	S.aureus	S.pyogenes	E.coli	P.aeruginosa	C.albicans	
1	Ampicillin	250	100	100	100	-	
2	Chloramphenicol	50	50	50	50	-	
3	Ciprofloxacin	50	50	25	25	-	
4	Griseofulvin	-	-	-	-	500	

CONCLUSION

1-aroyl aminoindan (2a-2j) and 1-aryl sulphonamide indan (3a-3j) have been synthesised.

The compounds 2c, 2d, 2e, 2i, 3d, 3e, 3g, 3j showed good comparable antimicrobial activity with known standard drugs.

AKNOWLEDGEMENT

The auther are thankful to principal, Kamani science & prataprai arts college, Amreli for providing research facilities.

REFERENCES

- K.Sakakibara, N.Yeneshima, T.Osawa; Jpn.Kokai, Tokyo Koho JP, 62, 252, 785 (1987); Chem.Abstr., <u>108</u>, 112238p (1988).
- [2] T.Lida, T.Kaminuma, N.Koge et al.; Jpn.Kokai, Tokkyo Koho JP, 06, 361, 531 (1994); Chem.Abstr., <u>122</u>, 151388w (1995).
- [3] Y.D.Kulkarni, Ali S.Mohd., S.Rowhana; Indian Drugs, 25(12), 505-7 (1988); Chem.Abst., <u>110</u>, 114786f (1989).
- [4] Clinical Microbiology Procedure Handbook, Chapter 5, Henry d. Isenberg, 2nd Edition, 2, 5.0.1.
- [5] Indian Journal of Chemistry, Section-b, 46b, 550-555, March (2007).

