Volume 5 Issue 2

BIOCHEMISTRY An Indian Journal

An Indian Journal Regular Paper

BCAIJ, 5(2), 2011 [104-108]

Synthesis and antitumor activity of aza-chalcones and their Pt(IV) complexes

Shuxiang Wang^{1*}, Wenqing Shao¹, Jie Duan¹, Qian Zhang¹, Hongxin Jiang¹, Jinchao Zhang¹, Ke Wang² ¹College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, (CHINA) ²Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, (CHINA) E-mail : wsx@hbu.edu.cn *Received: 23rd September, 2010 ; Accepted: 3rd October, 2010*

ABSTRACT

Eight aza-chalcones $L_{1.8}$ and eight new platinum(IV) complexes $C_{1.8}$ with aza-chalcones were synthesized. The complexes have been characterized by elemental anaylsis, IR spectra, electronic spectrum and ¹H NMR. The cytotoxicity was tested by MTT assays and compared with the cytotoxicity of cisplatinum. The results indicate that the complexes $C_{1.3}$ and $C_{5.8}$ have cytotoxicity against tested A-549 cell line; moreover, the cytotoxicity of complexes C_6 approached cisplatinum. The complexes C_3 , C_4 and C_6 have cytotoxicity against tested Hela cell line, but the cytotoxicity of these complexes is lower than cisplatinum. Most of the coorespounding ligands have no cytotoxicity against tested two cell lines, and the cytotoxicity of all ligands is lower than complexes. The results suggest that the cytotoxicity of all complexes against A-549 cell line is better than against Hela cell line. © 2011 Trade Science Inc. - INDIA

INTRODUCTION

Cisplatin is widely applied in the treatment of a various types of cancer such as germ cell tumors, ovarian, lung, hed and neck, bladder carcinomas, etc^[1,2]. However, it has severe side effects such as nephrotoxicity, nausea, ototoxicity, neurotoxicity and myelotoxicity in low dose. In addition to these, the therapeutic efficacy is also limited by resistant tumor cell sub-populations. To overcome these disadvantages, people have explored to prepare many new platinum complexes and studied their anti-tumor activity in recent decades. Sev-

KEYWORDS

Platinum (IV) complexes; Aza-chalcones; Synthesis; Cytotoxicity.

eral Pt(IV) complexes have been synthesized recently and shown high activity *in vitro* and in clinical testing^[3]. Pt(IV) complexes are a new class of platinum complexes that exhibits less toxicity than cisplatin. This kind of complex has some advantages such as allowing oral administration, reduced toxicity, decrease in the amount of the complex that is lost or deactivated on the path to the target cell and a low cross-resistance to cisplatin^[4,5].

Chalcone is a kind of natural organic compound which is widely in plants such as liquorice, safflower and so on. The molecule of chalcones is flexible; it can

Scheme 1 : The synthesis of aza-chalcones

be combined with many biological receiver. So that, this kind of compounds have many biological activities, such as, antitumor activity, anti-HIV activity, anti anti-bacterial activity, antioxidant activity, etc^[6-15].

It contains pyridinyl in the structure of aza-chalcone, the N atom of pyridinyl has strong coordination ability with various metal ions. Medvecky et al.^[16] reported that aza-chalcone has higher cytotoxic. Based on the above reasons, eight platinum(IV) complexes were synthesized, anticancer activity *in vitro* were also studied in the present work.

RESULTS AND DISSCUSION

Synthesis and spectroscopic data of aza-chalcones

All reagents and solvents were of analytical grade.

2-Acetyl pyridine (2.10 mmol) and aromatic aldehyde(2.00 mmol) was added to water with stirring, then the sodium carbonate solution was added to the mixture. The reactions were followed by thin layer chromatography (TLC). After completion of the reaction, the products were purified by column chromatography on silica gel (200-300 mesh, eluted with a mixture of petroleum ether and ethyl acetate) (Scheme 1).

The yields of aza-chalcones L_{1-8} were shown in TABLE 1.

The data of NMR, IR and MS spectra for the new compounds are provided as follows:

L₁: yellow solid; ¹H NMR (600 MHz, CDCl₃), δ: 6.97-7.07 (m, 2H, CH-CH), 7.27-7.30 (m, 2H, Ph-H), 7.34 (d, 1H, J=13 Hz, CH=CH), 7.40-7.46 (m, 3H, Ph-H), 7.68-7.74 (m, 1H, Py-H), 7.78-7.82 (m, 2H, Py-H), 8.13 (d, 1H, J=13 Hz, CH=CH), 8.69 (d, 1H, Py-H); ¹³C NMR, δ: 122.81, 124.60, 126.80, 127.35, 127.47, 128.85, 129.22, 136.18, 137.05, 142.10, 144.78, 148.75, 154.16, 189.30; IR (KBr), v_{max} : 1660, 1577, 989 cm⁻¹; m/z (ESI) calcd. for C₁₆H₁₃NO [M+Na]⁺258.1.

L₃: yellow solid; ¹H NMR (600 MHz, CDCl₃), δ: 3.79 (s, 3H, OCH₃), 6.88 (d, 2H, Ph-H), 7.42-7.44 (m,

Scheme 2: The synthesis of aza-chalcone platinum(IV) complexes

1H, Py-H), 7.64 (d, 2H, Ph-H), 7.80-7.83 (m, 1H, Py-H), 7.87 (d, J=16 Hz, 1H, CH=CH), 8.14-8.17 (m, 2H, 1CH=CH and 1Py-H), 8.69 (d, 1H, Py-H); ¹³C NMR, δ : 55.37, 114.33, 118.49, 121.03, 122.84, 126.75, 127.38, 127.92, 130.66, 137.01, 144.67, 148.77, 154.41, 161.74, 189.31; IR (KBr), v_{max} : 1663, 1598, 1565, 1257, 1029, 986 cm-¹; m/z (ESI) calcd. for C₁₅H₁₃NO₂ [M+Na]⁺ 262.1.

L₇: slight yellow solid; ¹H NMR (600 MHz, CDCl₃), δ: 7.28-7.51 (m, 4H, Ph-H), 7.85 (d, J=13 Hz, 1H, CH=CH), 7.89-7.91 (m, 1H, Py-H), 8.19 (d, J=13 Hz, 1H, CH=CH), 8.28-8.37 (m, 2H, Py-H), 8.73-8.74 (m, 1H, Py-H); ¹³C NMR, δ: 123.0, 123.3, 126.8, 127.0, 128.1, 130.2, 131.2, 133.4, 135.7, 137.3, 140.2, 148.6, 153.8, 188.8; IR (KBr), v_{max} : 1672, 1602, 1578, 1027, 996 cm⁻¹; m/z (ESI) calcd. for C₁₄H₁₀CINO [M+Na]⁺ 266.1.

Synthesis spectroscopic data of aza-chalcone platinum(IV) complexes

Synthesis of aza-chalcone platinum(IV) complexes

All reagents and solvents were of analytical grade.

The aza-chalcone platinum(IV) complexes have been prepared by the reaction of K_2PtCl_6 with azachalcones: adding aza-chalcones and K_2PtCl_6 to a solution of water and ethanol, then the mixture was stirred at 40°C. The reactions were followed by thin layer chromatography (TLC). After completion of the reaction, the products were separated by centrifugal effect, then washed with the mixture of water-ethanol, and dried under vacuum condition (Scheme 2).

Elemnetal analysis

The elemental analysis showed that all the complexes were of high purity (TABLE 2). There is good agreement between caculated and found values for the complexes.

Regular Paper

TABLE 1	: The yields of aza-chalcones L_{1}	.8
---------	---------------------------------------	----

Product	R	Time, h	Yield, %	M.P.,°C	M.P.,°C ^[Lit]
L_1	C ₆ H ₅ CH=CH	5	83	86-88	-
L_2	$4-CH_3C_6H_4$	6	79	84-86	84.8-85.3 ^[17]
L_3	$2\text{-OCH}_3C_6H_4$	6	76	180-182	-
L_4	$4\text{-OCH}_3\text{C}_6\text{H}_4$	4.5	83	84-86	84.6-85.2 ^[17]
L_5	3,4- O ₂ CH ₂ C ₆ H ₃	4	80	150-151	150.3- 150.8 ^[17]
L_6	$4-NO_2C_6H_4$	0.5	97	156-158	158.2- 158.5 ^[17]
L_7	$2-ClC_6H_4$	5	85	92-96	-
L_8	$4-ClC_6H_4$	5	89	100-102	102.2- 102.5 ^[17]

IR spectra and electronic spectrum

As listed in TABLE 3, the IR spectra of the complexes are similar; the main bands with tentative assignments are listed in Table. The bands of v_{Py} , $v_{C=O}$ and $v_{HC=CH}$ in these complexes shift to lower frequencies than the corresponding aza-chalcones. Thus it indicates that the aza-chalcones are coordinated with platinum.

Pyridinyl in different ligands have strong absorption peaks at 240-260 nm. Aftre coordinated with platinum, the absorption peaks of complexes have appeared at 263-265 nm. That means the absorption peaks red shift by ca. 5-25 nm for the complexes compared with ligands. That means the pyridinyl in ligands is coordinated with platinum.

¹H NMR

The chemical shift of the complexes was listed as follows:

C₁: red solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 6.97-7.07 (m, 4H, CH-CH), 7.27-7.30 (m, 4H, Ph-H), 7.34 (d, 2H, J=16 Hz, CH=CH), 7.40-7.46 (m, 6H, Ph-H), 7.68-7.74 (m, 2H, Py-H), 7.78-7.82 (m, 4H, Py-H), 8.13 (d, 2H, J=16 Hz, CH=CH), 8.69 (d, 2H, Py-H). **C**₂: brown solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 3.23 (s, 6H, 2CH₃), 6.93 (d, 4H, 4Ph-H), 7.62 (d, J=16 Hz, 2H, 2CH=CH), 7.68-7.71 (m, 2H, 2Py-H), 7.81 (d, 4H, 4Ph-H), 8.04-8.07 (m, 2H, 2Py-H), 8.16 (d, J=16 Hz, 2H, 2CH=CH), 8.23 (d, 2H, 2Py-H), 8.81 (d, 2H, 2Py-H).

C₃: red solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 3.91 (s, 6H, 2CH₃), 7.46-7.49 m, 2H, 2Ph-H), 7.50-7.53 (m, 2H, 2Ph-H), 7.75-7.77 (m, 2H, 2Py-H), 7.78 (d, J=16 Hz, 2H, 2CH=CH), 7.84 (d, 2H, 2Ph-H),

BIOCHEMISTRY An Indian Journal

TABLE 2 : Elemental a	nalysis values of	platinum(IV)	complexes
-----------------------	-------------------	--------------	-----------

Complexes	R	Mf. of	Found. (Calcd.)/%			
Complexes		complexes	С	Н	Ν	
C	CH=CHC_H	Pt(L ₄)Cl ₄	47.53	3.67	3.44	
e ₁	011-0110-0115	11(12)/014	(47.57)	(3.22)	(3.47)	
C.	4 CH-C-H	$P_{t}(I_{-})C_{1}$	45.74	3.76	3.59	
C_2	4-011306114	$PI(L_2)CI_4$	(45.97)	(3.32)	(3.58)	
C		$P_{t}(L)C_{1,2}UO$	42.05	3.47	3.37	
C_3	2-0CH3C6H4	$PI(L_3)CI_2^2ZI_2O$	(42.30)	(3.52)	(3.29)	
C		$D_{t}(I_{-})C_{-}^{1}$	42.29	3.41	3.32	
\mathbf{C}_4	4-0CH ₃ C ₆ H ₄	$PI(L_4)CI_4$	(42.30)	(3.52)	(3.29)	
C	240 CH C H	Pt(L5)Cl4·H2O	41.88	3.04	3.29	
C_5	$3,4-0_2CH_2C_6H_3$		(41.81)	(2.55)	(3.25)	
C_6	$4-NO_2C_6H_4$	$Pt(L_6)Cl_4{\cdot}C_2H_5OH$	40.43	3.07	6.57	
			(40.40)	(2.92)	(6.28)	
C	C_7 2- ClC_6H_4 $Pt(L_7)Cl_4$		42.08	3.13	3.32	
C7		$Pt(L_7)Cl_4 C_2H_5OH$	(42.05)	(3.30)	(3.16)	
C_8	4-ClC ₆ H ₄	$Pt(L_8)Cl_4{\cdot}C_2H_5OH$	42.11	3.09	3.41	
			(42.05)	(3.30)	(3.16)	

8.02 (d, 2H, 2Ph-H), 813-8.15 (m, 2H, 2Py-H), 8.24-8.25 (m, 2H, 2Py-H), 8.30 (d, J=16 Hz, 2H, 2CH=CH), 8.81 (d, 2H, 2Py-H).

C₄: yellow solid; 3.83 (s, 6H, 2CH₃), 6.93 (d, 4H, 4Ph-H), 7.62 (d, J=16 Hz, 2H, 2CH=CH), 7.68-7.71 (m, 2H, 2Py-H), 7.81 (d, 4H, 4Ph-H), 8.04-8.07 (m, 2H, 2Py-H), 8.16 (d, J=16 Hz, 2H, 2CH=CH), 8.23 (d, 2H, 2Py-H), 8.81 (d, 2H, 2Py-H).

C₅:dark red solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 6.12 (s, 4H, 2CH₂), 7.64 (d, J=16 Hz, 2H, 2CH=CH), 7.70 (s, 2H, 2Ph-H), 7.73-7.75 (m, 2H, 2Py-H), 7.81 (d, J=16 Hz, 2H, 2CH=CH), 8.01 (d, 2H, 2Ph-H), 8.07 (d, 2H, 2Ph-H), 8.12 (d, 2H, 2Py-H), 8.23-8.25 (m, 2H, 2Py-H), 8.80 (m, 2H, 2Py-H). **C**₆:dark yellow solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 7.73-7.75 (m, 2H, 2Py-H), 7.96 (d, J=16 Hz, 2H, 2CH=CH), 8.07-8.10 (m, 2H, 2Py-H), 8.13 (d, 4H, 4Ph-H), 8.15 (d, 2H, 2Py-H), 8.31 (d, 4H, 4Ph-H), 8.44 (d, 2H, J=16 Hz, 2CH=CH).

C₇: brown solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 7.28-7.51 (m, 8H, Ph-H), 7.85 (d, J=16 Hz, 2H, CH=CH), 7.89-7.91 (m, 2H, Py-H), 8.19 (d, J=16 Hz, 2H, CH=CH), 8.28-8.37 (m, 4H, Py-H), 8.73-8.74 (m, 2H, Py-H).

C₈:dark yellow solid; ¹H NMR (600 MHz, d₆-DMSO), δ: 7.50-7.52 (m, 2H, 2Py-H), 7.55 (d, 4H, 4Ph-H), 7.70-7.72 (m, 2H, 2Py-H), 7.87 (d, J=16 Hz, 2H, 2CH=CH), 7.88 (d, 4H, 4Ph-H), 7.95 (d, 2H, 2Py-H), 8.13 (d, 2H, 2Py-H), 8.29 (d, J=16 Hz, 2H, 2CH=CH).

Cytotoxic studies

As listed in TABLE 4, the complexes C_{1-3} and C_{5-8}

Regular Paper

 TABLE 3 : The IR spectrum data of Pt(IV) complexes

Entw	R	Compounds	v _{max}			
Енгу			Ру	C=O	HC=CH	
1 (C_1	1625	1706	1066	
	$CH=CHC_6H_5$	L_1	1577	1660	993	
2		C_2	1631	1709	1044	
2	$4-CH_3C_6H_4$	L_2	1595	1662	995	
		C ₃	1626	1702	1044	
3	$2-0CH_3C_6H_4$	L ₃	1598	1663	986	
4	4 ОСН С Н	C_4	1604	1706	1031	
4	$4-0CH_3C_6H_4$	L_4	1598	1663	986	
5	2 4 O CH C H	C ₅	1613	1693	1035	
5	$3,4-0_2CH_2C_6H_3$	L_5	1595	1661	990	
6	4 NO C H	C_6	1634	1713	1048	
0	$4 - 1 NO_2 C_6 \Pi_4$	L_6	1605	1668	991	
7		C_7	1641	1705	1040	
	$2-CIC_6\Pi_4$	L_7	1602	1672	993	
8	A CIC H	C_8	1614	1702	1052	
	4-CIC ₆ H ₄	L_8	1587	1667	990	

 TABLE 4 : The cytotoxicity of Pt(IV) complexes or cooresponding ligands to A-549 and Hela cells

Entw	Compounds -	$IC_{50}(\mu M)$ (x ±s)			
Entry		A-549	Hela		
1	CDDP	19.41±5.67	20.01±1.36		
2	C_1	39.48±8.01	87.38±3.11		
2	L_1	68.23±6.23	308.37±9.38		
2	C_2	43.67±3.03	129.59±4.06		
3	L ₂	249.46±25.56	203.43±0.67		
4	C ₃	39.46±2.93	43.38±2.29		
4	L_3	190.66±17.34	237.42±20.66		
5	C_4	79.35±3.38	53.28±2.39		
3	L_4	262.95±19.35	175.89 ± 8.82		
6	C ₅	42.46±6.67	48.92±1.86		
0	L_5	81.38±9.15	259.06±4.66		
7	C_6	21.70±1.87	39.18±0.08		
/	L_6	45.19±2.99	200.60 ± 8.00		
Q	C_7	45.16±3.17	110.88±4.57		
0	L ₇	149.58 ± 30.39	586.84±19.40		
9	C_8	41.82±6.68	90.48±1.87		
	L_8	255.95±19.53	530.21±10.57		

have cytotoxicity against A-549 with lower IC₅₀ value

(<50 μ M), however, complex C₄ have no cytotoxicity against A-549 with a higher IC₅₀ value (79.35 \pm 3.38 μ M). Complexes C_3 , C_5 and C_6 have cytotoxicity against Hela cell line with lower IC₅₀ value (43.38 \pm 2.29 μ M, $48.92 \pm 1.86 \,\mu\text{M}$ and $39.18 \pm 0.08 \,\mu\text{M}$), but the other five complexes $(C_1, C_2, C_4, C_7 \text{ and } C_8)$ have no cytotoxicity against Hela with a higher IC₅₀ value (>50 μ M). Complex C_{β} has the best cytotoxicity among the eight complexes against tested carcinoma cell lines with IC_{50} value of 21.70±1.87 µM and 39.18±0.08 µM, moreover, the cytotoxicity of C_6 against A-549 approached cisplatinum (IC₅₀ = $19.41 \pm 5.67 \,\mu$ M). The corresponding ligand L₆ has cytotoxicity against A-549 cell line with IC₅₀ value of 45.19 \pm 2.99 μ M, but has no cytotoxicity against Hela cell line with a higher IC_{50} (>50 μ M). The other corresponding ligands have no cytotoxicity against both A-549 and Hela cell lines (IC_{50} >50 μ M). Compared with corresponding ligands L₁-₈, the

CONCLUSION

complexes C_{1-8} have better cytotoxicity against both

A-549 and Hela cell lines.

In our present work, several Pt(IV) complexes have been synthesized from aza-chalcones and K_2 PtCl₆, and characterized the structure by elemental analysis, ¹H NMR, IR spectra and electronic spectra. The results showed that all the complexes were of high purity. The cytotoxicity of the complexes was tested by MTT assays. The results showed that complexes have activity against A-549 cell line with lower IC₅₀ (<50 µM) except complex C₄ with IC₅₀ value of 79.35±3.38 µM. The complex C₃, C₅ and C₆ have activity against Hela cell line with IC₅₀ values of 43.38±2.29 µM, 48.92±1.86 µM and 39.18±0.08 µM.

EXPERIMENTAL PROTOCOLS

Instrumentation and measurement

Elemental analyses were determined on an EA-1110 elemental analyzer. Molar conductances at room temperature were measured in 10⁻³ mol/L DMF solutions using a DFS-1 type conductivity meter. The IR spectra were recorded using KBr pellets and a PerkineElmer Model-683 spectrophotometer. The electronic spectra in DMSO were measured on an UV-3400 Toshniwal

Regular Paper

spectrophotometer. The ¹H NMR spectra were measured on a Bruker AV-400 NMR spectrometer in dimethyl sulfoxide-d6 with solvent peaks as references, and in chloroform with TMS as internal standard. ESIMS data were measured with Thermo Finnigan-LCQ. The thermal analysis was conducted using RI-GAKU 8150 meter (Ar, 10°C min⁻¹, Al₂O₃). The optical density (OD) at 570 nm was measured on a microplate spectrophotometer (Bio-Rad Model 680, USA).

Cell culture

Two different human carcinoma cell lines were used for cytotoxicity determination: A-549 (human lung adenocarcinoma cell line) and Hela (human cervical cancer cell line). They were obtained from the American Type Culture Collection (ATCC) and were cultured in RPMI-1640mediumsupplemented with 10% fetal bovine serum, 100 U/ml of penicillin and 100 mg/ml of streptomycin. Cells were maintained at 37C in a humidified atmosphere of 5% CO₂ in air.

Cytotoxicity analysis

The cells harvested from exponential phase were seeded equivalently into a 96-well plate, complexes were then added to the wells to achieve final concentrations. Control wells were prepared by addition of culture medium. Wells containing culture medium without cells were used as blanks. The plates were incubated at 37°C in a 5% CO₂ incubator for 48 h. The MTT assay was performed as described by Mosmann^[18]. Upon completion of the incubation, stock MTT dye solution (20 ml, 5 mg/ml) was added to each well. After 4 h incubation, 2-propanol (100 ml) was added to solubilize the MTT formazan. The OD of each well was then measured on a microplate spectrophotometer at a wavelength of 570 nm. The SRB assay was performed as previously described^[19]. Upon completion of the incubation, the cells were fixed in 10% trichloroacetic acid (100 ml) for 30 min at 4°C, washed five times in tap water and stained with 0.1% SRB in 1% acetic acid (100 ml) for 15 min. The cells were washed four times in 1% acetic acid and air-dried. The stain was solubilized in 10 mM unbuffered Tris base (100 ml) and OD was measured at 540 nm as above. The IC_{50} value was determined from plot of % viability against dose of compounds added.

ACKNOWLEDGEMENTS

This work was supported by the National Basic Research 973 Program (Grant No. 2010CB534913).

REFERENCES

- Y.E.Kwon, K.J.Whang, Y.J.Park, K.H.Kim; Bioorg.Med.Chem., 11, 1669-1676 (2003).
- [2] A.Bakalova, H.Varbanov, R.Buyukliev, G.Momekov, D.Ferdinandov, S.Konstantinov, D.Ivanov; Eur.J.Med.Chem., 43, 958-965 (2008).
- [3] W.H.Ang, I.Khalaila, C.S.Allardyce, L.Juillerat-Jeanneret, P.J.Dyson; J.Am.Chem.Soc., 127, 1382-1383 (2005).
- [4] V.Amani, N.Safari, H.R.Khavasi, M.Akkurt; Polyhedron, 28, 3026-3030 (2009).
- [5] J.M.Perez, M.Camazon, A.Alvarez-Valdes, A.G.Quiroga, L.R.Kelland, C.Alonso, M.C.Navarro-Ranninger; Chemico-Biological Interactions, 17, 99-115 (1999).
- [6] Y.Xia, Z.Y.Yang, P.Xia; Bioorg.Med.Chem.Lett., 10, 699-701 (2000).
- [7] Y.Wang, F.L.Chan, S.Chen; Life Sci., 77, 39-51 (2005).
- [8] S.Ducki, R.Forrest, J.A.Hadfield; Bioorg.Med. Chem.Lett., 8, 1051-1056 (1998).
- [9] C.Nakamura, N.Kawasaki, H.Miyataka; Bioorg. Med.Chem., 10, 699-706 (2002).
- [10] A.Cheenpracha, I.C.Karala, C.Ponglmanont; Bioorg.Med.Chem., 14, 1710-1714 (2006).
- [11] J.Deng, J.A.Kelley, J.J.Barchi; Bioorg.Med.Chem., 14, 3785-3792 (2006).
- [12] S.F.Nielsen, T.Boesen, M.Larsen; Bioorg.Med. Chem., 12, 3047-3054 (2004).
- [13] J.N.Domnguez, C.Leon, J.Rodrigues; J.Med. Chem., 48, 3654-3658 (2005).
- [14] F.Herencia, Ferrandizml, A.Ubeda; Bioorg.Med. Chem.Lett., 8, 1169-1174 (1998).
- [15] H.H.Ko, L.T.Tsao, K.L.Yu; Bioorg.Med.Chem., 11, 105-111 (2003).
- [16] R.Medvecky, J.Durinda, Z.Odlerova; Farm.Obzor., 61, 341-350 (1992).
- [17] S.Otto, F.Bertoncin, Engberts, B.F.N.Jan; J.Am.Chem.Soc., 118, 7702-7702 (1996).
- [18] T.Mosmann; J.Immunol.Methods, 65, 55-63 (1983).
- [19] P.Skehan, R.Storeng, D.Scudiero, A.Monks, J.McMahon, D.Vistica, J.T.Warren, H.Bokesch, S.Kenney, M.R.Boyd; J.Natl.Cancer Inst., 82, 1107-1112 (1990).

BIOCHEMISTRY Au Indian Journal