

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF NOVEL ISOTHIAZOLINE DERIVATIVES

V. M. BAROT^a and S. D. DESAI^{*}

Chemistry Division, Sheth M. N. Science College, PATAN (Guj.) INDIA ^aP. G. Centre in Chemistry, Smt. S. M. Panchal Science College, TALOD – 383215 (Guj.) INDIA

ABSTRACT

Among a wide variety of heterocycles that have been explored for developing pharmaceutically important molecule, isoxazoline and isothiazoline are one of them. Several nitrogen and sulfur containing heterocycle compounds are useful in pharmaceutical chemistry.

All the compounds have been characterized by elemental analysis IR, NMR and Mass spectral data. All the compounds have been screened for their antimicrobial activity to gram positive and gram negative bacterial strains and antifungal activity. The antimicrobial activities of the synthesized compounds have been compared with standard drugs like Amoxicillin, Ciprofloxacin and Griseofulvin.

Key words: Isothiazoline derivatives, Antimicrobial activity.

INTRODUCTION

Isoxazoline and their derivatives are important chemotherapeutic agents. Isoxazolines are one of the known heterocyclic compounds, which contain nitrogen and oxygen as heteroatoms. The survey of literature indicates that there are three type of isoxazolines, 2-isoxazoline, 3-isoxazoline and 4-isoxazoline. Initially, the 3,5-diphenyl-2-isoxazoline was isolated from the reaction of p-chloro-phenyl propiophenone with hydroxylamine¹.

Large number of isoxazoline derivatives have been found to possess antibacterial²⁻⁴, antituberculer⁵, antidiabeties⁶ and antifungalactivity⁷⁻⁹.

EXPERIMENTAL

Melting points of the synthesized compounds were taken in open capillaries and are uncorrected. The 1R spectra were recorded on a Shimadzu FT1R 8400 spectrophotometer,

^{*}Author for correspondence; E-mail: sddesai_2006@yahoo.co.in

PMR spectra were recorded on a BRUKER (300 MHz) spectrometer using TMS as internal standard and Mass spectra were recorded on a Jeol SX-102 (FAB) Mass spectrometer.

General procedure for the preparation of 3-(2'-hydroxy-3',5'di iodo-4'-ethoxy phen-1' yl)-5-substituted phenyl -2-isoxazoline

A mixture of 2'-hydroxy-3'-5'-di-iodo-4'-ethoxy-substituted phenyl chalcone (0.01 mole), hydroxylamine hydrochloride (0.02 mole) and aq. KOH (2 mL) was refluxed in ethanol (30 mL) for about 4 to 5 hrs. The reaction mixture was cooled and acidified by 1 : 1 HC1 in ice cold condition. Separated solid was filtered and crystallized from dilute ethanol as brownish needles.

Spectroscopic data of synthesized compound (1b, 1a, 1f)

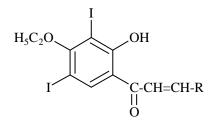
(1b) IR (KBr) cm⁻¹ : 3379 (Ar-OH), 1612 (C=N), 1082 (C-N), 3350 (N- H), 2854 (C-H), 780 (C-C1), 567 (C-I).

(1a) NMR (δ ppm.) : 1.48-1.52 (t, 3H), 4.10-4.22 (q, 2H), 8.50 (s, 1H), 3.03-3.10 (dd, 1H), 3.47-3.56 (dd, 1H), 5.33 (dd, 1H), 5.80 (s, 1H), 7.12-7.32 (m,6H).

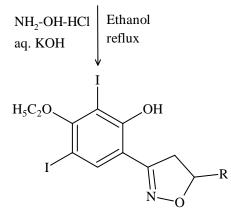
(1f) Mass (m/z) : 580 (m+1)

General procedure for the preparation of 3-(2'-hydroxy-3',5'di iodo-4'-ethoxy phen-1' yl)-5-substituted phenyl -2- isothiazoline

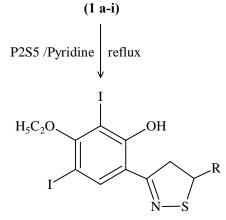
A mixture of 3-(2'-hydroxy-3'-5'-di-iodo-4'-ethoxy phen-l'-yl)-5-substituted phenyl-2-isoxazoline (0.01 mole), phosphorus pantasulfide (P_2S_5) (0.01 mole) was refluxed in pyridine (20 mL) for about 2-3 hrs. The reaction mixture was cooled and diluted with water. Separated solid was filtered and crystallized from dilute pyridine as brownish needles.


Spectroscopic data of synthesized compound (2i, 2c, 2d)

(2i) IR (KBr) cm⁻¹: 3380 (Ar-OH), 1618 (C=N), 1082 (C-N), 2850 (C-H), 608 (C-Br), 570 (C-I) 615 (C-S).


(2c) NMR (δ ppm.): 1.47-1.51 (t, 3H), 4.01-4.15 (q, 2H), 8.52 (s, 1H), 3.84 (s, OCH₃), 3.00-3.09 (dd, lH) 3.47-3.55 (dd, 1H), 5.30 (dd, 1H), 5.80 (s, 1H), 7.12-7.32 (m, 6H).

(2d) Mass (m/z): 567 (m+1).


Reaction scheme

2'-hydroxy -3'-5'-iodo-4'-ethoxy substituted phenyl chalcone

3-(2'-hydroxy -3'-5'-di iodo-4'-ethoxy phen-1' yl) -5- substituted phenyl -2- isoxazoline.

3-(2'-hydroxy -3'-5'-di iodo-4'-ethoxy phen-1' yl) -5- substituted phenyl-2- isothiazoline. (2 a-i)

$$\label{eq:R} \begin{split} R = -C_6H_5, \ 4-CL-C_6H_4, \ 4-OCH_3-C_6H_4, \ 4-OH-C_6H_4, \ 4-C_2H_5 \ 4-OH \ -C_6H_3, \ 3NO_2-C_6H_4, \\ 2-NO_2-C_6H_4, -C_4H_3O, \ 3Br-C_6H_4 \end{split}$$

Antimicrobial activity

The antibacterial activity of the synthesised compounds was screened by cup borer method¹⁰. The test contained 50 μ .g. compound. The activity was screened against gram positive bacteria *S. aureus* and *B. subtilis* and gram negative bacteria *E. coli* and *S. typhi*. Similarly the anti fungal activity of the compounds was also screened by cup borer method and the test contained 100 μ .g. compound. The activity was screened against fungul *A. niger*. The antimicrobial activities are summarized in the Table 1 and 2.

Comp. No.	R	Molecular formula	M.W.	M.P. (°C)	R.		% of Halogen Calcu. Found	
1a	-C ₆ H ₅	$C_{17}H_{15}O_3NI_2$	535	137	0.69	55%	47.47	47.50
1b	$-4-Cl-C_6H_4$	$C_{17}H_{14}O_3NC1I_2$	569.5	150	0.65	58%	50.83	50.84
1c	$-4-OCH_3-C_6H_4$	$C_{18}H_{I7}O_4NI_2$	565	150	0.71	56%	44.95	44.96
1d	$-4-OH-C_5H_4$	C,7H,504NI2	551	160	0.73	55%	46.09	46.12
1e	-3-C ₂ H ₅ -4-OH-C ₆ H ₃	$C_{19}H_{,9}0_4NI_2$	579	167	0.59	54%	43.86	43.88
1f	$-3-N0_2-C_6H_4$	$C_{17}H_{14}0_5N_2I_2$	580	114	0.63	58%	43.79	43.83
1g	$-2-NO_2-C_6H_4$	$C_{I7}H,_40_5N_2I_2$	580	85	0.72	56 %	43.79	43.82
1h	-C ₄ H ₃ O (furfuryl)	$C_{15}H_{13}0_4N1_2$	525	100	0.75	55%	48.38	48.38
1i	-3-Br-C ₆ H ₄	$C_{17}H_{14}O_3NBrI_2$	614	138	0.69	58%	54.38	54.36

Table 1: Physical constants of synthesized compounds

Table 2: Physical constant	s of synthesized compounds
----------------------------	----------------------------

Comp.	R	Molecular	M.W	M.P.	р	% of	% of Halogen	
No.	K	formula	IVI. VV	(°C)	R _f	Yield	Calcu.	Found
2a	$-C_6H_5$	$C_{17}H_{15}O_2NI_2S$	551	152	0.52	45%	46.09	46.10
2b	-4-Cl-C ₆ H ₄	$C_{17}H_{14}O_2NC1_{12}S\\$	585.5	125	0.51	50%	49.44	49.46
2c	$-4-OCH_3-C_6H_4$	$C_{18}H_{I7}0_3NI_2S$	581	168	0.49	48%	43.71	43.72
2d	$-4-OH-C_6H_4$	$C_{17}H_{15}0_{3}NI_{2}S$	567	142	0.58	46%	44.79	44.80
2e	-3-C ₂ H ₅ -4-OH-C ₆ H ₃	$C_{19}H_{I9}0_3NI_2S$	595	138	0.55	50%	42.68	42.70

Cont...

Comp.	R	Molecular	M.W	M.P.	р	% of	% of Halogen	
No.	ĸ	formula	IVI. VV	(°C)	R _f	Yield	Calcu.	Found
2 f	$-3-N0_2-C_6H_4$	$C_{17}H,_40_4N_2I_2S$	596	98	0.50	45%	42.61	42.62
2g	$-2-NO_2-C_6H_4$	$C_{I7}H_{14}0_4N_2I_2S$	596	118	0.51	48%	42.61	42.62
2h	-C ₄ H ₃ O (furfuryl)	$C_{15}H,_{3}0_{3}NI_{2}S$	541	128	0.53	50%	46.95	46.98
2i	-3-Br-C ₆ H ₄	$C_{I7}H_{I4}O_2N \; Brl_2S$	630	158	0.54	46%	53.00	53.04
TLC Solvent system : - Acetone: Benzene (3.5 : 6.5)								

RESULTS AND DISCUSSION

In present study, we have conducted the reaction in presence of ethanolic KOH between substituted phenyl chalcone and hydroxylamine hydrochloride to produce 3-(2'-hydroxy -3'-5'- di-iodo-4'-ethoxy phen-1' yl) -5- substituted phenyl 2- isoxazoline (1 a-i). It is further taken for the next step with Pyridine / P₂S₅ to produce 3-(2'-hydroxy -3'-5'- di-iodo -4'-ethoxy phen-1' yl) -5- substituted phenyl 2- isothiazoline (2 a-i). The structures of newly synthesized compounds (1 a-i) and (2 a-i) were investigated according to their analytical and spectral data. The synthesized compounds were under taken for the anti microbial activity and results were dictated in the Table 3 and 4.

Comp. No.	(Z	Antibacteri one of inhib	Fungicidal activity (Zone of inhibition in mm)		
	S. aureus	B. subtilis	E. coli	S. typhi	A. niger
1a	12	11	13	14	13
1b	13	11	13	12	16
1c	19	11	18	12	11
1d	12	14	13	11	14
1e	13	14	13	11	13
1f	14	15	13	12	11
1g	16	15	13	13	17
1h	13	14	14	12	16
1i	19	14	13	14	12

Table 3: Antimicrobial activity of synthesized compounds (1 a-i)

Cont...

Comp. No.	(Z	Antibacteri Cone of inhib	v		Fungicidal activity (Zone of inhibition in mm)
	S. aureus	B. subtilis	E. coli	S. typhi	A. niger
Standard drugs					
Amoxicillin	22	23	24	24	-
Ciprofloxacin	26	25	24	25	-
Griseofulvin	-	-	-	-	26

Comp. No.	(Z	Antibacteri cone of inhib	•	Fungicidal activity (Zone of inhibition in mm)	
	S. aureus	B. subtilis	E. coli	S. typhi	A. niger
2a	12	11	11	12	12
2b	12	11	12	12	12
2c	19	12	11	12	13
2d	13	12	11	13	13
2e	13	11	12	14	12
2f	13	12	12	14	11
2g	16	12	15	NA	11
2h	13	11	19	NA	12
2i	13	12	12	NA	12
Standard drugs					
Amoxicillin	22	23	24	24	-
Ciprofloxacin	26	25	24	25	-
Griseofulvin	-	-	-	-	26

Table 4: Antimicrobial activity of synthesized compounds (2 a-i)

The IR spectra of synthesized compounds showed characteristic bands, which were assigned in accordance with literature data. The absorption bands assignable to the stretching of C=N bond for compounds (1 a-i) were observed at frequencies range of 1612-1625 cm⁻¹.

1003

A band assignable to the stretching of -N-O and -C-O exhibits characterize peaks around 1550 cm⁻¹ and 1085 cm⁻¹, respectively. In IR Spectra of 3-(2'-hydroxy-3'- -5'-di-iodo-4'- ethoxy phen-1' yl) -5- substituted phenyl 2-isothiazoline (2 a-i) shows characteristic bands around the range of 1618 cm⁻¹ (C=N), 615 cm⁻¹ (C-S). In the both compounds Ar-OH shows the broad band at 3395-3450 cm⁻¹.

The ¹H NMR data recorded in CDCl₃. Spectrum of isoxazoline and isothiazoline its derivative resonance due to two protons attached to C-4 and one attached to C-5 of isoxazoline and isothiazoline ring showed up in form of three doublets, exhibiting a typical splitting pattern of ABX system of protons. A doublet appeared as a doublet at 3.03-3.10 δ ppm can be considerable due to H_A isoxazoline and isothiazoline ring. Signal due to H_B also appear as doublet of doublet at around at 3.45-3.55 δ ppm. Signal due to third proton of isoxazoline and isothiazoline also showed up as a doublet of doublet observed at 5.30-5.40 δ ppm. attributed H_x. All of the possible fragmentations peaks are observed from the MASS spectrum analysis, as expected.

Isoxazoline, isothiazoline and its derivatives showed the broad spectrum of antimicrobial activity. The activity spectrum showed that most of these compounds were moderately active against bacterial spices viz gram-positive *S. aureus*, *B. subtilis* and gramnegative *E.coli*. The anti microbial activity revealed that compounds (**1c**, **1g**, **1i**, **2c**, **2g**) were found moderately active against *S. aureus*. All compounds were found poor active against *B. subtilis*. While compound no **1c** and **2h** were more active against *E. Coli*. Compounds (**1 a-i**) shown moderate activity against gram-negative bacteria *S. typhi*. and isothiazoline (**2 a-f**) were found poor active against gram-negative *S. typhi*. All the tested compounds were found poor active (11-15 mm zone of inhibition) against fungi *A. niger*.

ACKNOWLEDGEMENT

The authors are grateful to the authorities of Shree C. D. Patel Mahavidhya Mandal, Talod, Principal of providing Smt S. M. Science Collage, Talod, and Principal of Sheth M. N. Science College, Patan for facilities. We are extremely thankful to CDRI, Lacknow and RSIC, Chandigarh for IR, NMR, and Mass Spectra. We also thank to Dr. S. C. Parikh, Head of Microbiology Department for antimicrobial activity.

REFERENCES

- 1. T. K. Okuda and K. Azik, Ann. Proc. Gifu Coil Pharm., 5, 29 (1955).
- 2. G. R. Subbanwad, M. A. Basser and Y. B. Vibhute, Ind. J. Pharm. Sci., 2, 264 (2002).

- 3. M. Shah, P. Patel, S. Korgaonkar and Parekh, Ind. J. Chem., **35B**, 1282 (1996).
- 4. Carradona and M. L. Stein, Farac., 15, 647 (1960).
- 5. H. G. Gorg and P. P. Singh, J. Med. Chem., 13, U50 (1970).
- 6. S. R. Krishnamohan and N. V. Suborao, Ind. J. Chem., 6, 66 (1968).
- 7. S. D. Patil, S. K. Guddadhe, C. S. Ukesh and V. S. Jamode, Asian J. Chem., **2**, 392 (1999).
- 8. H. K. Zarif and A. S. Yammi, J. Ind. Chem. Soc., 58, 168 (1981).
- 9. A. L. Barry, The Antimicrobial Susceptibility Test: Principle and Practices Edited by Illus Leu and Febiger (Philadelphia Pel USA), 180, Boil. Abstr., **64**, 25783 (1976).

Revised : 02.03.2013

Accepted : 05.03.2013