ISSN : 0974 - 7435

Volume 10 Issue 16

2014 *BioJechnology* An Indian Journal

FULL PAPER BTAIJ, 10(16), 2014 [9094-9098]

Effects of comprehensive land consolidation on land quality in hills and mountains

Ke Yin College of Geographical and Travel, Chongqing Normal University, Chongqing 400047, (CHINA) E-mail: knomi@gmail.com

ABSTRACT

The research object of this paper is BiBei comprehensive land consolidation projects in Bishan County of Chongqing, analysis the land comprehensive consolidation impact on land quality in hills and mountains. The results show: (1) Through comprehensive improvement of rural land, land topography factors increase the value of 18.66%; Soil factors increase the value of 10.38%; Moisture factors comprehensive values improved7.88%; Landscape factors increase the value of 2.59% (2) Overall, land quality integrated value is 1 before comprehensive improvement of rural land. Land quality integrated value is 1.395 after comprehensive improvement of rural land, improved by 39.5 %. Visible through the comprehensive improvement of rural land, land quality has increased in the study area, a good foundation for the sustainable development of agriculture.

KEYWORDS

Land consolidation; Effects; Hills and mountains.

© Trade Science Inc.

Ke Yin

INTRODUCTION

In recent years, under the principle of building a new socialist countryside guidance, Launched a number of projects to benefit farmers in chongqing. Such as land development and consolidation projects, low-yielding farmland, village project, the construction of a new socialist countryside, etc^[1-3].

However, under the new rural construction, land consolidation as a carrier to promote the construction of a model village just started, less empirical research on it. To this end, explore comprehensive land management mode under the new countryside construction, improve the planning of democracy, scientific, feasibility is very important^[4-6]. The research object of this paper is BiBei comprehensive land consolidation projects in Bishan County of Chongqing, analysis the land comprehensive consolidation impact on land quality in hills and mountains.

MATERIALS AND METHODS

The general situation of study area

The study area is located the Eight tang Town in Bishan County of Chongqing, the total area of 126.91 hm2. The area belongs to the subtropical humid monsoon climate, Rainfall, humid climate, with four distinct seasons. An average annual temperature of 18.3 $^{\circ}$ C, average annual rainfall of 1231.2 mm, an average annual sunshine time is 911.5 hours ; an average annual frost-free period 337 days.

Data sources

The original data mainly comes from BaTu town land use change survey data in 2012, BaTu town 2008 Statistical Yearbook, BaTu town comprehensive land consolidation planning (2008-2012), and the author's practical survey, use Bishan County Planning Bureau, trade and Economic Cooperation Bureau, agriculture bureau and other departments data for supplementary.

Research methods

Learn from previous research results, combined with the actual situation of the study area, Establish evaluation indictor system of land quality in land improvement area (TABLE 1)^[7]. In order to evaluate the impact of factors on agricultural production, using AHP to determine the weight of each evaluation factor weights (TABLE 2). In the evaluation system, for qualitative description of indicators, For all levels of evaluation factors were given scores ranging from 100 to 10(TABLE 3).

Comprehensive improvement in the status of rural land in the study area is the base, the quality index value of the default is 1 before land consolidation. Using the following formula standardization^[8]:

$$F = X_i / X_j \tag{1}$$

Where: F is the value of i indexes after standardization, Xi is the value i indexes after the comprehensive improvement, Xj is the value i indexes before the comprehensive improvement. Normalized index value, F is greater than 1, indicates that the value of land quality indicators improved; F is equal to 1, indicating no change in the value of land quality indicators; F is less than 1, indicating that the lower value of land quality indicators.

Finally, we use the following formula to calculate the value of the land quality.

$$E = \sum_{i=1}^{n} F_i \times W_i \tag{2}$$

Where: Fi represent the standard value of i indicators, E represent comprehensive evaluation value of the land quality, Wi representatives weight of i indicators.

EVALUATION RESULTS

based on In the field survey and data analysis, Land quality indicators for assignment and standardization, and assigned to the corresponding index weights, Finally, calculated the value of Land quality integrated and to compare them (TABLE 4).

The results show that: through comprehensive improvement of rural land, land topography factors increase the value of 18.66%. Among them, land flatness comprehensive values improved 10.24%, production convenient comprehensive values improved 2.88%, plots regularity

comprehensive values improved5.54%; Soil factors increase the value of 10.38%, among them, topsoil thickness comprehensive values improved4.39%, soil fertility levels comprehensive values improved5.99%, no change of land

3

utilization; Moisture Factors comprehensive values improved7.88%, Among them, water level of assurance comprehensive values improved2.91%, irrigation level of assurance comprehensive values improved3.89%, drainage level of assurance comprehensive values improved1.08%; Landscape factors increase the value of 2.59%, among them, landscape productivity comprehensive values improved0.76%, the beauty of the landscape comprehensive values improved1.83%_o

Target layer	Guidelines layer	Index layer	Indexes and grading standards	ran k
			Slope $< 1^{\circ}$, high flatness	1
			Slope of 1^0 - 3^0 , relatively high flatness	2
	Topography factors (B1)	Land flatness C1	Slope of 3^0 - 5^0 , general flatness	3
			Slope $>5^{\circ}$, low flatness	4
		Production convenient C2	convenient	1
		1 roduction convenient C2	not convenient	2
		Plots regularity C3	regularity	1
		Tiots regularity CS	not regularity	2
	Soil factors (B2) Moisture Factors (B3)	Topsoil thickness C4	25-40cm	1
			15-25cm	2
			<15 cm	3
		Soil fertility levels C5	fertile soil	1
			relatively High levels of soil fertility	2
			relatively Low levels of soil fertility	3
		Land utilization C6	poor soil	4
			>90%, high levels of Land utilization is	1
Effects of comprehensi			85%-90%, relatively high levels of land utilization	2
ve land			80%-85%, general land utilization	3
consolidation on land quality			< 80%, relatively low levels of land	4
(A)			utilization	1
()			adequate irrigation water limited irrigation water	1
		Water level of assurance C7	-	2
			no irrigation water	3
		Irrigation level of assurance	irrigation guaranteed rate of more than 90%	1
		C8	75%-90%	2
			<75%	3
			a perfect drainage facilities	1
		Drainage level of assurance C9	drainage facilities in general 受淹	2
			poor drainage facilities	3
	Landscape factors (B4)	Landscape Productivity C10	>1000kg	1
			800-1000kg	2
			600-800kg	3
			<600kg	4
			good	1
		The beauty of the landscape	common	2
		C11	poor	3

poor

TABLE 1: Evaluation indictor system of land quality in land improvement area

	B1	B1	B1	B1	
			B-A weight		
	0.4031	0.2822	0.2177	0.097	C-A weight
C1	0.5077				0.2047
C2	0.2861				0.1153
C3	0.2062				0.0831
C4		0.3111			0.0878
C5		0.4246			0.1198
C6		0.2643			0.0746
C7			0.5342		0.1163
C8			0.2684		0.0584
C9			0.1974		0.0430
C10				0.6227	0.0604
C11				0.3773	0.0366

 TABLE 2 : C- A weight

TABLE 3: Factors score - level comparison table

	100	90	80	70	60	50	40	30	20	10
C1	1		2		3		4			
C2	1		2							
C3	1				2					
C4	1		2		3					
C5	1		2		3		4			
C6	1		2		3		4			
C7	1		2		3					
C8	1		2		3					
C9	1		2		3					
C10	1		2		3		4			
C11	1		2		3					

TABLE 4 : The index standard value of land quality

Index layer	After remediation	Before remediation	Standard scores	Comprehensive value of after remediation	Comprehensive value of before remediation	added value
C1	60	90	1.50	0.2047	0.3071	0.1024
C2	80	100	1.25	0.1153	0.1441	0.0288
C3	60	100	1.67	0.0831	0.1385	0.0554
小『	—			0.4031	0.5897	0.1866
C4	60	90	1.50	0.0878	0.1317	0.0439
C5	60	90	1.50	0.1198	0.1797	0.0599
C6	100	100	1.00	0.0746	0.0746	0.0000
/小 ■	—			0.2822	0.3860	0.1038
C7	80	100	1.25	0.1163	0.1454	0.0291
C8	60	100	1.67	0.0584	0.0973	0.0389
C9	80	100	1.25	0.0430	0.0538	0.0108
小『	—			0.2177	0.2965	0.0788
C10	80	90	1.13	0.0604	0.0680	0.0075
C11	60	90	1.50	0.0366	0.0549	0.0183
小	—			0.0970	0.1229	0.0259
total				1.0000	1.3950	0.3950

Overall, Land quality integrated value is 1 before Comprehensive improvement of rural land, Land quality integrated value is 1.395 after Comprehensive improvement of rural land, improved by 39.5 %. Visible through the comprehensive improvement of rural land, land quality has increased in the study area, a good foundation for the sustainable development of agriculture. However, due to the qualitative evaluation described in more in the study, assignment method is more simple, there is a strong subjective and the result accuracy is not high. Future studies, can make use of mathematical methods and modern techniques, establish comprehensive land quality evaluation method more suitable for the comprehensive improvement of rural land.

CONCLUSION

Comprehensive land consolidation is compatible outward expansion and connotations are two ways to tap the potential of land use, can effective supplement of arable land because building occupant, raise the level of intensive use of arable land, food security and ecological security. The research object of this paper is BiBei comprehensive land consolidation projects in Bishan County of Chongqing, analysis the land comprehensive consolidation impact on regional land quality. The conclusion is as follows:

(1) Through comprehensive improvement of rural land

(1) Through comprehensive improvement of rural land, land topography factors increase the value of 18.66%; Soil factors increase the value of 10.38%; Moisture factors comprehensive values improved 7.88%; Landscape factors increase the value of $2.59\%_{\circ}$

(2) Overall, land quality integrated value is 1 before comprehensive improvement of rural land, Land quality integrated value is 1.395 after comprehensive improvement of rural land, improved by 39.5 %. Visible through the comprehensive improvement of rural land, land quality has increased in the study area, a good foundation for the sustainable development of agriculture.

However, due to the qualitative evaluation described in more in the study, assignment method is more simple, there is a strong subjective and the result accuracy is not high. Future studies, can make use of mathematical methods and modern techniques, establish comprehensive land quality evaluation method more suitable for the comprehensive improvement of rural land.

ACKNOWLEDGEMENTS

This work was financially supported by the National Natural Science Foundation of China (41201597); Based and cutting-edge research projects of Chongqing (cstc2013jcyjA0583).

REFERENCES

- [1] Yao Zhao; Accelerate the problem and recommend a new socialist countryside construction, Agricultural Economics, 11(12), 21 -21 (2007).
- [2] Xiaojun Liao; Improvement benefiting the agriculture policy of strong support for the modernization of specialty agriculture China, Chinese fiscal, **3(10)**, 8 -11 (**2008**).
- [3] C.H.Lu, M.K.Ittersum, R.RabbingeR; Quantitative assessment of resource-use efficient cropping systems: a case study for Anasl in the Loess Plateau of China, European Journal of Agronomy, **19**(2), 311-326 (**2003**).
- [4] S.Petr; Applying evaluation criteria for the land consolidation effect to three contrasting study areas in the Czech Republic, Land Use Policy, 23(4), 502-510 (2006).
- [5] M.David, C.Rafael, M.Flora; Land consolidation in inland rural Galicia, N.W, Spain, since 1950:An example of the formulation and use of questions, criteria and indicators for evaluation of rural, Land Use Policy, 23(4), 511-520 (2006).
- [6] P.Bonfant; Landscape analysis in areas affected by land consolidation, Landscape and Urban Planning, 37(l), 91-98 (1997).
- [7] Linna Wu, haibo luo; Biodiversity conservation land development and zoning evaluation based on AHP method in research, Anhui Agricultural Sciences, **38**(**33**), 19038 -19041 (**2010**).
- [8] Yixin Yang, Rongtao Wu, Zhiyong Wang; Land consolidation project impact assessment study of the land quality, Anhui Agricultural Sciences, **39(10)**, 6282 -6284 (**2011**).