ISSN : 0974 - 7435

Volume 10 Issue 2

FULL PAPER BTAIJ, 10(2), 2014 [248-252]

Sub-algebras of hilbert algebras in BCK-algebras

Zhang Qiuna^{1*}, Zhao Yingna², Liu Weixing¹, Zhao Wenjing¹ ¹Qinggong College Hebei United University, Tangshan 063000, Hebei, (CHINA) ²Hebei United University, Tangshan 063009, Hebei, (CHINA) E-mail: Zhangqiuna1980@163.com; 386653610@qq.com

Abstract

The notion of BCK-algebras was formulated first in 1966 by K. Iséki Japanese Mathematician. In this paper we will discuss Sub-algebras of Hilbert Algebras in BCK-algebras and its proposition. © 2014 Trade Science Inc. - INDIA

KEYWORDS

BCK-algebra; Hilbert algebras; Sub-algebras.

INTRODUCTION

BCK-algebra is originated from two different ways. One of the motivation is based on set theory, another motivation is from classical and non-classical propositional calculi. The notion of ideals in BCK-algebras was introduced by K. Iséki in 1975. The ideal theory plays a fundamental role in the general development of BCKalgebras, Y. L. Liu and J. Meng discussed fuzzy ideal, fuzzy positive implicative and fuzzy implicative ideal in BCI-algebras. We also give a fuzzy ideal of Hilbert Algebras in BCK-algebras, and some propositions. The notion of BCK-algebras was formulated first in 1966 by K. Iséki, Japanese, Mathematician. There are many classes of BCK-algebras, for example, sub-algebras, bounded BCK-algebras, positive implicative BCK-algebra, implicative BCK-algebra, commutative BCKalgebra, BCK-algebras with condition (S), Griss (and semi-Brouwerian) algebras, quasi-commutative BCKalgebras, direct product of BCK-algebras, and so on. Here we will discuss Sub-algebras of Hilbert Algebras in BCK-algebras and its proposition.

Let *H* be a set with a binary operation \rightarrow and a constant 1. Then $(H, \rightarrow, 1)$ is called a Hilbert Algebras in BCK-algebra if it satisfies the following conditions:

BCI-1 $(y \rightarrow z) \rightarrow ((z \rightarrow x) \rightarrow (y \rightarrow x)) = 1$, BCI-2, $y \rightarrow ((y \rightarrow x) \rightarrow x) = 1$, BCI-3 $x \rightarrow x = 1$, BCI-4 $y \rightarrow x = 1$ and $x \rightarrow y = 1$ imply x = y, BCK-5 $x \rightarrow 1 = 1$.

Inwe can define a binary operation by if and only if. Then is called a Hilbert Algebras in BCK-algebra if it satisfies the following conditions:

BCI-1' $(z \rightarrow x) \rightarrow (y \rightarrow x) \le y \rightarrow z$ BCI-2' $(y \rightarrow x) \rightarrow x \leq y$, BCI-3' $x \leq x$, BCI-4' $x \le y$ and $y \le x$ imply x = y, BCK-5' $1 \le x$, BCI-6' $x \le y$ if and only if $y \to x = 1$. **Proposition**

In a Hilbert Algebras in BCK-algebra $(H, \rightarrow, 1)$,

Definition

249

we have the following properties:

(1) $x \le y$ implies $y \to z \le x \to z$, (2) $x \le y$ and $y \le z$ imply $x \le z$.

Proof

Let $x \le y$, then by BCI-1', we have $(\mathbf{x} \to \mathbf{z}) \to (\mathbf{y} \to \mathbf{z}) \le \mathbf{y} \to \mathbf{x}$ Since $x \le y$ implies $y \to x = 1$, we obtain $(\mathbf{x} \to \mathbf{z}) \to (\mathbf{y} \to \mathbf{z}) \le 1$ Combining BCI-4' and BCK-5' we have $(\mathbf{x} \to \mathbf{z}) \to (\mathbf{y} \to \mathbf{z}) = 1$ This is $y \to z \le x \to z$, hence (1) holds. By (1), $y \le z$ implies $z \to x \le y \to x$. If

 $x \le y$ then $y \to x = 1$, hence $z \to x \le 1$, and so $x \le z$, therefore (2) holds.

Proposition

For a Hilbert Algebras in BCK-algebra $(H, \rightarrow, 1)$, we have

 $\mathbf{z} \rightarrow (\mathbf{y} \rightarrow \mathbf{x}) = \mathbf{y} \rightarrow (\mathbf{z} \rightarrow \mathbf{x})$.

Proof

By BCI-2' it has $(z \rightarrow x) \rightarrow x \le z$, Making use of

Proposition

(1) and BCI-1'

 $z \rightarrow (y \rightarrow x) \le ((z \rightarrow x) \rightarrow x)$ $\rightarrow (y \rightarrow x) \le y \rightarrow (z \rightarrow x)$

Since x, y, z are arbitrary, interchanging y, z in the above inequality it obtains

$\mathbf{z} \rightarrow (\mathbf{y} \rightarrow \mathbf{x}) \geq \mathbf{y} \rightarrow (\mathbf{z} \rightarrow \mathbf{x})$

By BCI-4' it has $z \to (y \to x) = y \to (z \to x)$, The proof is complete.

Proposition

For a Hilbert Algebras in BCK-algebra $(H, \rightarrow, 1)$, for any x, y, z in H, the following hold:

- (1) $y \to x \le z$ implies $z \to x \le y$
- (2) $(z \to y) \to (z \to x) \le (y \to x)$
- (3) $x \le y$ implies $(z \to x) \le (z \to y)$
- (4) $y \rightarrow x \le x$

(5) $1 \rightarrow x = x$

Proof

- (1) is directly consequence of Proposition 1.2.
- (2) follows from BCI-1' and (1) Let $x \le y$. Then $y \to x = 1$, and hence by (2) $(z \to y) \to (z \to x) \le y \to x \le 1$. Hence $z \to x \le z \to y$, (3) hold. By virtue of (1), BCI-3 and BCK-5, it has $x \to (y \to x) = y \to (x \to x) = y \to 1 = 1$ Consequently $y \to x \le x$, proving (4). By BCI-2', it has $(1 \to x) \to x \le 1$, that is $x \le 1 \to x$. Moreover by (4), it gets $1 \to x \le x$, hence by BCI-4', (5) hold.

For any $x, y \in H$, we denote $x \wedge y = (x \rightarrow y) \rightarrow y$, $x \wedge y$ is a lower bound of x and y,

and $x \wedge x = x$, $x \wedge 1 = 1 \wedge x = 1$, but in general $x \wedge y \neq y \wedge x$.

Proposition

In any Hilbert Algebras in BCK-algebras, we have $(y \land x) \rightarrow x = y \rightarrow x$.

Proof

Since $y \land x \le y$, by Proposition 1.2(1) we get

 $y \rightarrow x \leq (y \wedge x) \rightarrow x$ On the other hand, by BCI- 2' we have $(y \wedge x) \rightarrow x = ((y \rightarrow x) \rightarrow x) \rightarrow x \leq y \rightarrow x$ This means $(y \wedge x) \rightarrow x = y \rightarrow x$.

SUB-ALGEBRAS

Definition

Let $(H, \rightarrow, 1)$ be a Hilbert Algebras in BCK-algebras, and let H_0 be a nonempty subset of H. Then is called to be a Sub-algebras of H if for any $x, y \in H_0, y \rightarrow x \in H_0$.

Theorem

Suppose $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-

BioTechnology ^{Au Indian Journal}

Full Paper 🛥

algebras, and let H_0 be a Sub-algebras of H, then the following hold:

- (1) $1 \in H_0$,
- (2) $(H_0, \rightarrow, 1)$ is also a Hilbert Algebras in BCK-algebras,
- (3) H is a Sub-algebras of H,
- (4) {1} is a Sub-algebras of H.

Theorem

Given a Hilbert Algebras in BCK-algebras $(H, \rightarrow, 1)$, let $h_0 \neq 1$, then $(\{1, h_0\}; \rightarrow 1)$ is a Subalgebras of H.

Lemma

In a Hilbert Algebras in BCK-algebras $(H, \rightarrow, 1)$,

for any $x, y, z \in H$, the following conditions hold:

(1) if $x \neq y$ then $x \rightarrow y \neq 1$ whenever $y \rightarrow x = 1$,

(2) $y \to x = z$ implies $x \to z = 1$.

Proof

Suppose $x \neq y$ and $y \rightarrow x = 1$. If $x \rightarrow y = 1$, by BCI-4 we obtain x = y, which contradicts to. Hence (1) holds.

If $y \rightarrow x = z$, it follows from proposition 1.4(4) that $x \rightarrow z = x \rightarrow (y \rightarrow x) = 1$.

This shows that(2) is true. The proof is completed.

Definition

For a n-sequence a_1, a_2, \dots, a_n of a Hilbert Algebras in BCK-algebras $(H, \rightarrow, 1)$, the $(n-1) \times n$ matrix

$$\mathbf{H} = \begin{pmatrix} \mathbf{a}_2 \rightarrow \mathbf{a}_1 & \mathbf{a}_1 \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_1 \rightarrow \mathbf{a}_n \\ \mathbf{a}_3 \rightarrow \mathbf{a}_1 & \mathbf{a}_3 \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_3 \rightarrow \mathbf{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_n \rightarrow \mathbf{a}_1 & \mathbf{a}_n \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_{n-1} \rightarrow \mathbf{a}_n \end{pmatrix}$$

is called the adjoint matrix relative to the n – sequence a_1, a_2, \dots, a_n .

Theorem

Given *n*-sequence a_1, a_2, \dots, a_n $(n \ge 2)$ for a Hilbert Algebras in BCK-algebras $(H, \rightarrow, 1)$, if

 $a_i \neq a_j$ whenever $i \neq j(1 \le i, j \le n)$ then there exist at least a column in the adjoint matrix *H* which consists of non-one element.

Proof

If n = 2, then

$$\mathbf{H} = (\mathbf{a}_2 \rightarrow \mathbf{a}_1, \mathbf{a}_1 \rightarrow \mathbf{a}_2)$$

Suppose $a_2 \rightarrow a_1 = a_1 \rightarrow a_2 = 1$, then we have

 $a_1 = a_2$. Hence the assertion holds for n = 2.

Suppose that the assertion holds for n = k. For a

k+1-sequence $a_1, a_2, \dots, a_k, a_{k+1}$ of H,

Let $a_i \neq a_j$ whenever $i \neq j (1 \le i, j \le k+1)$ and its adjoint matrix

$$\mathbf{H}_{k+1} = \begin{pmatrix} \mathbf{a}_2 \rightarrow \mathbf{a}_1 & \mathbf{a}_1 \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_1 \rightarrow \mathbf{a}_k & \mathbf{a}_1 \rightarrow \mathbf{a}_{k+1} \\ \mathbf{a}_3 \rightarrow \mathbf{a}_1 & \mathbf{a}_3 \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_2 \rightarrow \mathbf{a}_k & \mathbf{a}_2 \rightarrow \mathbf{a}_{k+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{a}_k \rightarrow \mathbf{a}_1 & \mathbf{a}_k \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_{k-1} \rightarrow \mathbf{a}_k & \mathbf{a}_{k-1} \rightarrow \mathbf{a}_{k+1} \\ \mathbf{a}_{k+1} \rightarrow \mathbf{a}_1 & \mathbf{a}_{k+1} \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_{k+1} \rightarrow \mathbf{a}_k & \mathbf{a}_k \rightarrow \mathbf{a}_{k+1} \end{pmatrix}$$

Denote

$$\mathbf{H}_{k} = \begin{pmatrix} \mathbf{a}_{2} \rightarrow \mathbf{a}_{1} & \mathbf{a}_{1} \rightarrow \mathbf{a}_{2} & \cdots & \mathbf{a}_{1} \rightarrow \mathbf{a}_{k} \\ \mathbf{a}_{3} \rightarrow \mathbf{a}_{1} & \mathbf{a}_{3} \rightarrow \mathbf{a}_{2} & \cdots & \mathbf{a}_{3} \rightarrow \mathbf{a}_{k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{k} \rightarrow \mathbf{a}_{1} & \mathbf{a}_{k} \rightarrow \mathbf{a}_{2} & \cdots & \mathbf{a}_{k-1} \rightarrow \mathbf{a}_{k} \end{pmatrix}$$

Obviously H_k is the adjoint matrix of the k-sequence a_1, a_2, \dots, a_k . By the hypothesis of induction we know that there is at least a column in H_k , which consists of non-one elements, without loss of any generality suppose that it is the first column, thus

$$\begin{cases} a_2 \rightarrow a_1 \neq 1 \\ a_3 \rightarrow a_1 \neq 1 \\ \vdots \\ a_k \rightarrow a_1 \neq 1 \end{cases}$$

If $a_{k+1} \rightarrow a_1 \neq 1$ then each element in the first column of H_{k+1} is not equal to 1, and consequently the assertion holds for n = k + 1.

If $a_{k+1} \rightarrow a_1 = 1$, then by Lemma 2.4 we obtain $a_1 \rightarrow a_{k+1} \neq 1$ as $a_1 \neq a_{k+1}$. We can verify $a_i \rightarrow a_{k+1} \neq 1$ for $2 \le i \le k$.

In fact, if there is $i_1(2 \le i_1 \le k)$ such that $a_{i_1} \rightarrow a_{k+1} = 1$, by Proposition 1.2(2) we get $a_{i_1} \rightarrow a_1 = 1$ as $a_{k+1} \rightarrow a_1 = 1$. This is impossible. This shows that each element in the first column of H_{k+1} is not equal to 1, and so the assertion holds for n = k + 1. This finishes the proof.

For a set *H* denote the cardinal of *H* by |H|. For a Hilbert Algebras in BCK-algebras $(H, \rightarrow, 1)$, |H| is called to be the order of this algebra. If $|H| < \infty$, then $(H, \rightarrow, 1)$ is called to be of finite order; if |H| = n, then it is said to be of order *n*; if $|H| = \infty$, then it is said to be of infinite order.

Theorem

Any Hilbert Algebras in BCKalgebras $(H, \rightarrow, 1)$ with order n + 1 must contain a subalgebra with order $n(n \ge 1)$.

Proof

Suppose $H = \{1, a_1, a_2, \dots, a_n\}$ is a Hilbert Algebras in BCK-algebras $(H, \rightarrow, 1)$, with order n + 1, in which $a_i \neq a_j$ whenever $i \neq j$, and let

$$\mathbf{H} = \begin{pmatrix} \mathbf{a}_2 \rightarrow \mathbf{a}_1 & \mathbf{a}_1 \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_1 \rightarrow \mathbf{a}_n \\ \mathbf{a}_3 \rightarrow \mathbf{a}_1 & \mathbf{a}_3 \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_3 \rightarrow \mathbf{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_n \rightarrow \mathbf{a}_1 & \mathbf{a}_n \rightarrow \mathbf{a}_2 & \cdots & \mathbf{a}_{n-1} \rightarrow \mathbf{a}_n \end{pmatrix}$$

be the adjoint matrix of the *n*-sequence a_1, a_2, \dots, a_n . By Theorem 2.6 there exists at least a column in *H* which consists of non one elements, without loss of generality, we can suppose it is the *n*-th column of *H*, that is,

$a_i \rightarrow a_n \neq 1$ $i = 1, 2, \cdots, n-1$.

We now show that $H_0 = \{1, a_1, a_2, \dots, a_{n-1}\}$ is a sub-algebra of H. In fact, if not, then there are i and $j(1 \le i, j \le n-1)$ such that $i \ne j$ and

$$a_i \rightarrow a_i = a_n$$
. By Lemma 2.4(1) we have

$$a_i \rightarrow a_n = 1$$
 $i = 1, 2, \cdots, n-1$.

 $a_i \rightarrow a_n \neq 1 (i = 1, 2, \dots, n-1)$. This completes the proof.

Theorem

Let *H* be a Hilbert Algebras in BCKalgebras $(H, \rightarrow, 1)$ with order $n \geq 1$. Then we have

$$1 \le N(i) \le C_{n-1}^{i-1}, i = 1, 2, \cdots, n$$

Where N(i) denotes the number of sub-algebras with order i in H.

Proof

We know that any sub-algebra with order $i(1 \le i \le n)$ consists of 1 and i-1 non one elements, it follows that $N(i) \le C_{n-1}^{i-1}$. On the other hand, by Theorem 2.7 *H* at least contains a sub-algebras H_{n-1} with order n-1, H_{n-1} contains a sub-algebras H_{n-2} with order n-2, repeating this argument we get that $1 \le N(i)$ for all $i(1 \le i \le n)$. This finishes the proof.

Example

Let $H = \{1, a, b, c\}$ in which \rightarrow is given by the table:

				-
\rightarrow	1	а	b	с
1	1	а	b	c
а	1	1	а	c
b	1	1	1	c
с	1	а	b	1

Then $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-algebras, the lattice of sub-algebras in H is as follows:

It is not difficult to see that

 $N(i) = C_{4-1}^{i-1}$, i = 1,2,3,4.

This example show that in

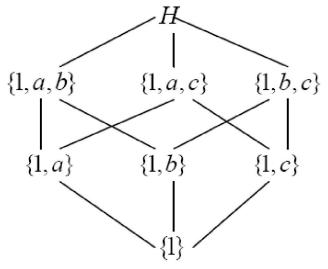
Theorem

 $N(i) = C_{n-1}^{i-1}$ may hold.

Example

Let $H = \{1,2\}$ in which \rightarrow is given by:

Full Paper c



 $1 \rightarrow 1 = 2 \rightarrow 1 = 2 \rightarrow 2 = 1$ and $1 \rightarrow 2 = 2$.

Then $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-alge-

bras, and $1 = N(i) = C_{2-1}^{i-1}$, i = 1, 2.

This example show that in

Theorem

N(i) = 1 may hold.

Example

Let $H = \{1, a, b, c, d\}$ in which \rightarrow is given by the table:

\rightarrow	1	а	b	с	d
1	1	а	b	с	d
а	1	1	b	с	d
b	1	а	1	с	b
с	1	1	1	1	b
d	1	a	1	с	1

Then $(H, \rightarrow, 1)$ is a Hilbert Algebras in BCK-algebras, and $1 < N(3) = C_{5-1}^{3-1}$.

This example show that in Theorem 2.8, N(i) > 1 and $N(i) < C_{n-1}^{i-1}$.

REFERENCES

- [1] Zhang Qiuna; An Ideal of Hilbert Algebras in BCKalgebras.[J]. Proceedings of 2009 conference on communication faculty, 310-311 (**2009**).
- [2] Zhang Qiuna; Negative Implicative BCK-algebras. Proceedings of Annual Conference of China Insti-

tute of Communications, 273-176.

- [3] Zhang Qiuna; Double Stone Algebra's Ideal and Congruence Ideal. Proceedings of Annual Conference of China Institute of Communications, 277-279
- [4] Zhang Qiuna; Fuzzy Ideal of Hilbert Algebras in BCK-algebras. ISVC, (2011).
- [5] Zhang Qiuna; Study of attribute resolution stage's reduce arithmetic, Internationl Conference on Test and Measurement, 145-151 (2009).
- [6] Ma xinghua; Evaluation Analysis of University Student Scholarship, Internationl Conference on Test and Measurement, 152-155 (2009).
- [7] Li Dongmei; A Comparative Study of Some Rational Interpolation Algorithms and its Application2009 Internationl Conference on Test and Measurement, 152-155.
- [8] Zhang Qiuna; Relationships between some Ideals of Hilbert Algebras in BCK-algebras. ISVC, (2011).
- [9] Y.B.Jun; Fuzzy commutative ideal of BCKalgebras[J] Fuzzy Sets and Systems, 1994(63):1~26
- [10] Jie Meng; On Ideals in BCK-algebras[J]. Math Japan, 1, 143~154 (1994).
- [11] Jie Meng, Y.Jun, H.Kim; Fuzzy implication ideal of BCK-algebras[J]. Fuzzy Sets and Systems, 89, 243~248 (1997).