

Organic CHEMISTRY

Trade Science Inc.

An Indian Journal Full Paper

Study of interaction between metal halides and sulphur donors by DFT B88-LYP based calculations

P.P.Singh*, Prabhat Kumar, Ashutosh Kumar Srivastava Chemistry Department, M.L.K. (P.G.) College, Balrampur - 271 201, U.P., (INDIA) E-mail : dr_ppsingh@sify.com Received: 27th February, 2010 ; Accepted: 9th March, 2010

ABSTRACT

Interaction energy (E_{int}), charge transfer (ΔN) and lowering of energy (ΔE) for 72 interactions between 12 metal halides (A) and 6 sulphur donors (B) have been evaluated with the help of Cache software using DFT B88-LYP method. The halides are chloride, bromide and iodide of tin, zinc, cadmium and mercury. The results indicate that acceptor strength is in the order SnI₄ > SnBr₄ > CdCl₂ > CdI₂ > SnCl₄ > ZnCl₂ > HgCl₂ > CdBr₂ > HgI₂ > ZnI₂ > HgBr₂ > ZnBr₂. The acceptor strength of tin halides are in the order iodide bromide > chloride and halides of zinc, cadmium and mercury are in the order chloride > bromide. The chemical potential μ_A also supports the above order. Azepane-2-thione ($C_6H_{11}NS$) is the strongest base and thioformamide (HCSNH₂) is the weakest base against all the acceptors. The observation also indicates that best interaction is shown when global softness values of acid and base are equal.

© 2010 Trade Science Inc. - INDIA

INTRODUCTION

In recent years, density functional theory (DFT) has emerged as a powerful tool through which chemical concepts such as reactivity, selectivity, and reaction path of a system have been studied^[1-5]. The concepts of chemical potential (μ), electronegativity, and hardness (η)^[6-8], collectively known as global reactivity descriptors, have systematized the study in this area.

The principle of maximum hardness(PMH)^[9], relating the relative stability of a system to a larger value of hardness, has been tested using semi-empirical as well as *ab initio* quantum chemical techniques^[10]. Local reactivity descriptors, such as Fukui function (FF) and local softness, relating changes in electron density to the number of electrons and chemical potential, respectively, have been used to determine the sitereactivity

KEYWORDS

Interaction energy; Global softness; Charge transfer; Chemical potential; Energy lowering; Donor; Acceptor.

of a system^[11]. Electrophilic and nucleophilic FFs have been used as indicators of reactivity to nucleophilic and electrophilic reagents, respectively^[12]. Roy et al.^[13] proposed that relative electrophilicity and relative nucleophilicity, based on the ratio of electrophilic and nucleophilic FFs and its inverse, are more reliable descriptors to locate the preferable sites for electrophilic and nucleophilic attack respectively within a molecule. Parr and co-workers have defined a new concept of global philicity^[14] using which Chattaraj and co-workers have defined local philicity indices^[14b]. The importance of charges and different frontier-controlled descriptors in description of electrostatic interactions in ligand chemistry has been highlighted in the past^[14c]. Recently, Tanwar et al. proposed two reactivity descriptors viz. normalized Fukui function (NFF) and bond deformation kernel (BDK)^[14d] for comparative studies on the

OCAIJ, 6(2), 2010 [190-199]

191

systems with varying number of atoms. A local version of the hard-soft-acid-base (HSAB) principle, proposed by Gazquez and Mendez^[15], and pursued by Pal and co-workers^[16], as well as, Geerlings and co-workers^[17] to a variety of chemical situations, is suited to semiquantitative description of interaction energy.

MATERIAL AND METHOD

Mulliken^[18,19] suggested that quantities of ionization potential (I) and electron affinity (A) are of primary importance for processes involving electron transfer reactions. The quantity (I_B-I_A) is an energy cost of transfer of per electron from donor to acceptor to decide which of the two molecules is donor and which is acceptor. The following equations was given,

$$(\mathbf{I}_{A} - \mathbf{I}_{B}) - (\mathbf{I}_{B} - \mathbf{I}_{A}) = 2(\boldsymbol{\chi}^{\circ}_{A} - \boldsymbol{\chi}^{\circ}_{B})$$
(1)

DFT^[20-24] confirmed this conclusion by identifying the finite difference formula for chemical potential $\mu = (\delta E/\delta N)_v$ with the negative of Mulliken electronegativity. Moreover, using DFT arguments Parr et. al^[25,26]. were able to recognize the importance of a second derivative of E vs. N. The finite difference formula for this second derivative,

$$\eta = \frac{1}{2} \left(\delta E / \delta N \right)_{v} = \frac{1}{2} \left(\delta \mu / \delta N \right)_{v} \approx \frac{1}{2} \left(I - A \right)$$
(2)

Was identified by them as an operational definition of an absolute hardness^[27-29]. Therefore, DFT provided a quantitative measure for a qualitative concept that was so successfully used in a description of Lewis acids and bases^[30]. Parr and Pearson also derived simple expressions for the amount of charge transfer ΔN and energy change ΔE which accompany the formation of A:B complex from acid A and base :B. These expressions are,

$$\Delta \mathbf{N} = (\boldsymbol{\chi}^{\mathbf{o}}_{\mathbf{A}} - \boldsymbol{\chi}^{\mathbf{o}}_{\mathbf{B}})/2(\boldsymbol{\eta}_{\mathbf{A}} + \boldsymbol{\eta}_{\mathbf{B}})$$
(3)

$$\Delta \mathbf{E} = -(\boldsymbol{\chi}^{\mathbf{o}}_{\mathbf{A}} - \boldsymbol{\chi}^{\mathbf{o}}_{\mathbf{B}})^2 / 4(\boldsymbol{\eta}_{\mathbf{A}} + \boldsymbol{\eta}_{\mathbf{B}})$$
(4)

Although equations (3) and (4) are incomplete, they have a great value in trying to predict a global change during the reaction with a minimum number of parameters. The shortcomings of equations 3 and 4 are known and were pointed out in original derivation. Thus the dependence of the chemical potential on the changing external field was neglected. Also, stereoselectivity of the reaction is not manifested through these expressions.

The process involving electron transfer reaction, was also described by interaction $energy^{[31,32]}(\Delta E_{int})$, which

is described as follows:

Consider a stable molecule A formed by the bonding of K atoms with a total number of electrons N_A , and a stable molecule B formed by the binding of L atoms with a total number of electrons N_B . The interaction energy between these two chemical species, according to DFT, is given by,

$$\Delta \mathbf{E}_{int} = \mathbf{E} \left[\boldsymbol{\rho}_{AB} \right] \cdot \left[\boldsymbol{\rho}_{A} \right] \cdot \left[\boldsymbol{\rho}_{B} \right]$$
(5)

It has been shown by Gazquez^[30], that if the interaction energy is divided into two steps and one makes use of the properties of hardness and softness functions, then equation (5) can be written in the following form,

$$\Delta \mathbf{E}_{int} = \Delta \mathbf{E}_{v} + \Delta \mathbf{E} \boldsymbol{\mu} \tag{6}$$

Where,

$$\Delta E_{v} - (\mu_{A} - \mu_{B})^{2} \cdot S_{A} S_{B} / \{2(S_{A} + S_{B})\}$$
(7)
And,

$$\Delta E_{\mu} \approx -\frac{1}{2} \cdot \lambda / (S_{A} + S_{B})$$
(8)

Where $\mu =$ Chemical potential,

$$S = 1 / \eta$$
, $\lambda = (N_A + N_B)^2 / 1000$

The first term, ΔE_{y} , corresponds to the charge transfer process between A and B arising from the chemical potential equalization principle at constant external potential. The second term, ΔE_{μ} , corresponds to a reshuffling of the charge distribution, and it is basically a manifestation of the maximum hardness principle. In the original derivation of Gazquez^[30] of equation (8), the proportionality factor was given by the product of a constant times the square of the total number of electrons $(N_A + N_B)$. However, using the hardness functional, and the properties of the hardness and softness kernels, it was shown by Parr and Gazquez^[30-33] at the correct proportionality factor is given by the product of a constant times the square of an "effective number of valence electrons". Thus, in equation (8), we have replaced this product by another constant λ .

We have considered the interaction between metal halides shown in TABLE 1 and sulphur donors shown in TABLE 2.

RESULT AND DISCUSSION

Donor acceptor interaction

The donor acceptor interaction between 6 sulphur

 TABLE 1 : A series of twelve lewis acids (A) Acceptor molecules

S.No.	Name of acceptor	Formula of acceptor	S. No.	Name of acceptor	Formula of acceptor
1	Sn(iv) chloride	SnCl ₄	7	Cd(IIchloride	CdCl ₂
2	Sn(iv) bromide	SnBr ₄	8	Cd(II)bromide	$CdBr_2$
3	Sn(iv)iodide	SnI_2	9	Cd(II)iodide	CdI_2
4	Zn(II)chloride	ZnCl ₂	10	Hg(II)chloride	HgCl ₂
5	Zn(II)bromide	ZnBr ₂	11	Hg(II)bromide	HgBr ₂
6	Zn(II)iodide	ZnI_2	12	Hg(II)iodide	HgI_2

donor molecules listed in TABLE 2 and twelve acceptor molecules listed in TABLE 1 has been studied in terms of metal ligand interaction energy (E_{int}). In total there are 72 (6 × 12) interactions between sulphur donors and the acceptor metal halides. The interaction energy of sulphur donors and metal halides are presented in TABLE 3-14.

Interaction of sulphur donors with acceptor metal halide

Stability of complexes formed by increases as the value of interaction energy decreases. Interaction energy of sulphur donors with acceptor metal halide $SnCl_4$ is shown in TABLE 3. The value of interaction energy of interaction of $C_6H_{11}NS$ with metal halide $SnCl_4$ is lowest (-26.490 Electron Volt) which indicates that the $C_6H_{11}NS$ forms most stable complex with $SnCl_4$. The value of interaction energy of interaction of HCSNH₂ with metal halide $SnCl_4$ is highest (-11.590 eV) which indicates that the HCSNH₂ forms least stable complex with $SnCl_4$. The values of interaction energy indicate that the order of the stability of complexes formed by sulphur donors with $SnCl_4$ is in the following order,

$\begin{array}{l} \mathbf{C}_{6}\mathbf{H}_{11}\mathbf{NS} \!\!\!> \!\!\mathbf{C}_{3}\mathbf{H}_{5}\mathbf{NS}_{2} \!\!\!> \!\mathbf{HCSN}(\mathbf{CH}_{3})_{2} \!\!> \!\mathbf{HCSNHC}_{2}\mathbf{H}_{5} \\ \!\!> \!\mathbf{HCSNHCH}_{3} \!\!> \!\mathbf{HCSNH}_{2} \end{array}$

Stability of complexes formed with other halides are almost in the same order as indicated by the values presented in TABLE 4-14. Line graph between interaction energy of sulphur donors with the acceptor metal halide $SnCl_4$ is shown in Graph 1.

Chemical potential of metal halides (μ_a)

Acceptor property of metal halides depends on the value of chemical potential (μ_A). The lower is the value of chemical potential (μ_A) better will be the acceptor property. Values of chemical potentials of metal halides

TABLE 2 : T	Third series	of lewis base	s (B)- Su	lphur donor
-------------	--------------	---------------	-----------	-------------

S. No	Lewis bases (B)	Name of lewis bases	Structure of lewis bases
1	C ₃ H ₅ NS ₂	1,3-thiazolidine-2-thione	H ₂ C-CH ₂ S NH S
2	C ₆ H ₁₁ NS	azepane-2-thione	
3	HCSNH ₂	thioformamide	S н н—Ш−́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
4	HCSNHCH ₃	N-methylthioformamide	H K CH3
5	HCSN(CH ₃) ₂	N,N-dimethylthioformamide	H CH ₃ CH ₃
6	HCSNHC ₂ H ₅	N-ethylthioformamide	S H HN_N_ C₂H₅

are given in the TABLE 15. Among tin (iv) halides the $SnCl_4$ has the lowest value hence best acceptor. The acceptor strength of tin halides can be arranged in the following order,

$SnI_4 < SnBr_4 < SnCl_4$

In the halides of zinc, the value of chemical potential of zinc chloride is lowest indicating its highest acceptor property. The acceptor strength of zinc halides can be arranged in the following order,

$ZnCl_2 < ZnI_2 < ZnBr_2$

In the halides of cadmium, the value of chemical potential of cadmium chloride is lowest indicating its highest acceptor property. The acceptor strength of cadmium halides can be arranged in the following order,

CdCl, < CdI, < CdBr,

In the halides of mercury the value of chemical potential of mercury chloride is lowest indicating its highest acceptor property. The acceptor strength of mercury halides can be arranged in the following order,

$HgCl_2 < HgI_2 < HgBr_2$

The acceptor strength of all the twelve metal halides can be arranged in the following order depending on the values of chemical potential,

 $\begin{array}{l} \mathbf{SnI}_4 < \mathbf{SnBr}_4 < \mathbf{CdCl}_2 < \mathbf{CdI}_2 < \mathbf{SnCl}_4 < \mathbf{ZnCl}_2 < \\ \mathbf{HgCl}_2 < \mathbf{CdBr}_2 < \mathbf{HgI}_2 < \mathbf{ZnI}_2 < \mathbf{HgBr}_2 < \mathbf{ZnBr}_2 \end{array}$

TABLE 3 : Values of interaction energy of sulphur donors (B) with acceptor metal halide ${\rm SnCl}_4(A)$

Lewis bases (B)	μ_{B}	$\mathbf{S}_{\mathbf{B}}$	N _A N _B	λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 34	43.560	-1.425	-18.773	-20.198
C ₆ H ₁₁ NS	-2.934	0.670	32 46	60.840	-1.718	-24.771	-26.490
HCSNH ₂	-3.303	0.664	32 18	25.000	-1.355	-10.234	-11.590
HCSNHCH ₃	-3.151	0.660	32 24	31.360	-1.493	-12.875	-14.368
HCSN(CH ₃) ₂	-3.031	0.657	32 30	38.440	-1.605	-15.827	-17.432
HCSNHC ₂ H ₅	-3.147	0.676	5 32 30	38.440	-1.513	-15.579	-17.092

TABLE 5 : Values of interaction energy of sulphur donors (B) with acceptor metal halide $SnI_4(A)$

Lewis bases (B)	μ_{B}	$\mathbf{S}_{\mathbf{B}}$	N _A N _B	λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
$C_3H_5NS_2$	-3.157	0.603	32 34	43.560	-0.947	-14.149	-15.096
C ₆ H ₁₁ NS	-2.934	0.670	32 46	60.840	-1.217	-18.927	-20.144
HCSNH ₂	-3.303	0.664	32 18	25.000	-0.879	-7.810	-8.689
HCSNHCH ₃	-3.151	0.660	32 24	31.360	-1.006	-9.818	-10.824
HCSN(CH ₃) ₂	-3.031	0.657	32 30	38.440	-1.111	-12.061	-13.172
HCSNHC ₂ H ₅	-3.147	0.676	5 32 30	38.440	-1.023	-11.916	-12.939

TABLE 7 : Values of interaction energy of sulphur donors (B) with acceptor metal halide $ZnBr_2(A)$

Lewis bases (B)	μ_{B}	$\mathbf{S}_{\mathbf{B}}$	N _A N _B	λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 16	25.000	-1.594	-15.489	-17.083
C ₆ H ₁₁ NS	-2.934	0.670	32 16	38.440	-1.800	-21.968	-23.768
HCSNH ₂	-3.303	0.664	32 16	11.560	-1.530	-6.657	-8.187
HCSNHCH ₃	-3.151	0.660	32 16	16.000	-1.635	-9.251	-10.886
HCSN(CH ₃) ₂	-3.031	0.657	32 16	21.160	-1.720	-12.284	-14.004
HCSNHC ₂ H ₅	-3.147	0.676	32 16	21.160	-1.646	-12.015	-13.661

 TABLE 9 : Values of interaction energy of sulphur donors (B)
 with acceptor metal halide CdCl, (A)

Lewis bases (B)	μ_{B}	$\mathbf{S}_{\mathbf{B}}$	$N_A N_I$	_Β λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 16	5 25.000	-0.627	-15.731	-16.358
C ₆ H ₁₁ NS	-2.934	0.670	32 16	5 38.440	-0.744	-22.285	-23.028
HCSNH ₂	-3.303	0.664	32 16	5 11.560	-0.579	-6.754	-7.333
HCSNHCH ₃	-3.151	0.660	32 16	5 16.000	-0.643	-9.386	-10.029
HCSN(CH ₃) ₂	-3.031	0.657	32 16	521.160	-0.695	-12.464	-13.160
HCSNHC ₂ H ₅	-3.147	0.676	53216	5 21.160	-0.648	-12.187	-12.835

 TABLE 11 : Values of interaction energy of sulphur donors
 (B) with acceptor metal halide CdI, (A)

Lewis bases (B)	μ _B	$\mathbf{S}_{\mathbf{B}}$	NANE	λ	Ev	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 16	25.000	-0.856	-14.298	-15.154
C ₆ H ₁₁ NS	-2.934	0.670	32 16	38.440	-1.019	-20.401	-21.420
HCSNH ₂	-3.303	0.664	32 16	11.560	-0.799	-6.179	-6.977
HCSNHCH ₃	-3.151	0.660	32 16	16.000	-0.884	-8.584	-9.468
HCSN(CH ₃) ₂	-3.031	0.657	32 16	21.160	-0.954	-11.395	-12.349
HCSNHC ₂ H ₅	-3.147	0.676	32 16	21.160	-0.892	-11.163	-12.055

TABLE 4 : Values of interaction energy of sulphur donors (B) with acceptor metal halide $SnBr_4(A)$

Lewis bases (B)	$\mu_{\rm B}$	SB	NAN	β λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
$C_3H_5NS_2$	-3.157	0.603	32 34	43.560	-1.135	-16.885	-18.021
C ₆ H ₁₁ NS	-2.934	0.670	32 46	60.840	-1.410	-22.405	-23.815
HCSNH ₂	-3.303	0.664	32 18	3 25.000	-1.067	-9.252	-10.319
HCSNHCH ₃	-3.151	0.660	32 24	31.360	-1.196	-11.636	-12.832
HCSN(CH ₃) ₂	-3.031	0.657	32 30	38.440	-1.303	-14.300	-15.602
HCSNHC ₂ H ₅	-3.147	0.676	32 30	38.440	-1.214	-14.097	-15.311

TABLE 6 : Values of interaction energy of sulphur donors (B) with acceptor metal halide ZnCl, (A)

Lewis bases (B)	μ_{B}	SB	N _A N _B	λ	Ev	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 16	25.000	-0.819	-15.234	-16.054
$C_6H_{11}NS$	-2.934	0.670	32 16	38.440	-0.964	-21.634	-22.598
HCSNH ₂	-3.303	0.664	32 16	11.560	-0.765	-6.555	-7.320
HCSNHCH ₃	-3.151	0.660	32 16	16.000	-0.842	-9.109	-9.951
HCSN(CH ₃) ₂	-3.031	0.657	32 16	21.160	-0.905	-12.095	-13.000
HCSNHC ₂ H ₅	-3.147	0.676	32 16	21.160	-0.849	-11.834	-12.682

TABLE 8 : Values of interaction energy of sulphur donors (B) with acceptor metal halide ZnI₂(A)

Lewis bases (B)	μ_{B}	SB	N _A N _B	λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 16	25.000	-1.336	-13.961	-15.297
C ₆ H ₁₁ NS	-2.934	0.670	32 16	38.440	-1.554	-19.954	-21.508
HCSNH ₂	-3.303	0.664	32 16	11.560	-1.270	-6.043	-7.313
HCSNHCH ₃	-3.151	0.660	32 16	16.000	-1.380	-8.394	-9.774
HCSN(CH ₃) ₂	-3.031	0.657	32 16	21.160	-1.469	-11.142	2-12.611
HCSNHC ₂ H ₅	-3.147	0.676	5 32 16	21.160	-1.392	-10.920	-12.312

 TABLE 10 : Values of interaction energy of sulphur donors

 (B) with acceptor metal halide CdBr, (A)

Lewis bases (B)	μ_{B}	SB	N _A N _B	λ	Ev	\mathbf{E}_{μ}	Eint
$C_3H_5NS_2$	-3.157	0.603	32 16	25.000	-0.862	-15.780	-16.642
$C_6H_{11}NS$	-2.934	0.670	32 16	38.440	-1.001	-22.349	-23.350
HCSNH ₂	-3.303	0.664	32 16	11.560	-0.808	-6.773	-7.582
HCSNHCH ₃	-3.151	0.660	32 16	16.000	-0.883	-9.414	-10.297
HCSN(CH ₃) ₂	-3.031	0.657	32 16	21.160	-0.944	-12.501	-13.445
HCSNHC ₂ H ₅	-3.147	0.676	32 16	21.160	-0.890	-12.222	-13.111

 TABLE 12 : Values of interaction energy of sulphur donors

 (B) with acceptor metal halide HgCl, (A)

Lewis bases (B)	μ_{B}	SB	N _A N _B	λ	$\mathbf{E}_{\mathbf{v}}$	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	32 26	36.000	-0.962	-21.479	-22.441
C ₆ H ₁₁ NS	-2.934	0.670	32 26	51.840	-1.125	-28.612	-29.738
HCSNH ₂	-3.303	0.664	32 26	19.360	-0.904	-10.765	-11.669
HCSNHCH ₃	-3.151	0.660	32 26	25.000	-0.990	-13.955	-14.945
HCSN(CH ₃) ₂	-3.031	0.657	32 26	31.360	-1.060	-17.574	-18.633
HCSNHC ₂ H ₅	-3.147	0.676	32 26	31.360	-0.998	-17.201	-18,199

TABLE 13 : Values of interaction energy of sulphur donors (B) with acceptor metal halide $HgBr_2(A)$

TABLE 14 : Values of interaction energy of sulphur donors (B) with acceptor metal halide $HgI_2(A)$

Lewis bases (B)	μ_{B}	S _B	N _A N _B	λ	Ev	\mathbf{E}_{μ}	Eint	Lewis bases (B)	μ_{B}	S _B	$N_A N_B$	λ	Ev	\mathbf{E}_{μ}	Eint
C ₃ H ₅ NS ₂	-3.157	0.603	3 32 26	36.000	-1.469	-22.694	-24.163	C ₃ H ₅ NS ₂	-3.157	0.603	3 32 26 3	36.000	-1.341	-20.054	-21.395
C ₆ H ₁₁ NS	-2.934	0.670) 32 26	51.840	-1.659	-30.103	-31.762	C ₆ H ₁₁ NS	-2.934	0.670) 32 26 5	51.840	-1.561	-26.848	-28.408
HCSNH ₂	-3.303	0.664	32 26	19.360	-1.407	-11.330	-12.737	HCSNH ₂	-3.303	0.664	4 32 26 1	19.360	-1.276	-10.096	-11.372
HCSNHCH ₃	-3.151	0.660) 32 26	25.000	-1.505	-14.691	-16.196	HCSNHCH ₃	-3.151	0.660) 32 26 2	25.000	-1.385	-13.085	-14.471
HCSN(CH ₃) ₂	-3.031	0.657	32 26	31.360	-1.584	-18.504	-20.088	HCSN(CH ₃) ₂	-3.031	0.657	7 32 26 3	31.360	-1.475	-16.474	-17.949
HCSNHC ₂ H ₅	-3.147	0.676	5 32 26	31.360	-1.515	-18.092	-19.607	HCSNHC ₂ H ₅	-3.147	0.676	5 32 26 3	31.360	-1.398	-16.146	-17.545

TABLE 15 : Values of HOMO energy, LUMO energy, electronegativity, chemical potential, electron affinity, absolute hardness and global softness of metal halides

Metal	номо	LUMO	Electron-	Chemical	Ionization	Electron	Absolute	Global
halide	energy	energy	egativity	potential (µ _A)	potential	affinity	hardness	softness (S _A)
$SnCl_4$	-8.087	-4.500	6.294	-6.294	8.087	4.500	1.794	0.558
SnBr_4	-7.271	-4.361	5.816	-5.816	7.271	4.361	1.455	0.687
SnI_4	-6.497	-4.362	5.430	-5.430	6.497	4.362	1.068	0.937
$ZnCl_2$	-10.945	-1.768	6.357	-6.357	10.945	1.768	4.589	0.218
$ZnBr_2$	-12.618	-2.836	7.727	-7.727	12.618	2.836	4.891	0.204
ZnI_2	-10.255	-3.423	6.839	-6.839	10.255	3.423	3.416	0.293
$CdCl_2$	-11.298	-0.882	6.090	-6.090	11.298	0.882	5.208	0.192
$CdBr_2$	-11.890	-1.338	6.614	-6.614	11.890	1.338	5.276	0.190
CdI_2	-9.862	-2.500	6.181	-6.181	9.862	2.500	3.681	0.272
HgCl ₂	-10.775	-2.280	6.528	-6.528	10.775	2.280	4.248	0.235
HgBr ₂	-12.909	-2.414	7.662	-7.662	12.909	2.414	5.248	0.191
HgI_2	-10.227	-3.447	6.837	-6.837	10.227	3.447	3.390	0.295

TABLE 16 : Values of HOMO energy, LUMO energy, electronegativity, chemical potential, electron affinity, absolute hardness and global softness of sulphur donors (B)

Lewis bases	HOMO energy	LUMO energy	Flootnonogotivity	Chemical	Ionization	Electron	Absolute	Global softness
(B)	(eV)	(eV)	Lieuronegauvity	potential	potential	affinity	hardness	$(\mathbf{S}_{\mathbf{B}})$
$C_3H_5NS_2$	-4.816	-1.497	3.157	-3.157	4.816	1.497	1.660	0.603
C ₆ H ₁₁ NS	-4.425	-1.442	2.934	-2.934	4.425	1.442	1.492	0.670
HCSNH ₂	-4.809	-1.796	3.303	-3.303	4.809	1.796	1.507	0.664
HCSNHCH ₃	-4.665	-1.636	3.151	-3.151	4.665	1.636	1.515	0.660
HCSN(CH ₃) ₂	-4.553	-1.508	3.031	-3.031	4.553	1.508	1.523	0.657
HCSNHC ₂ H ₅	-4.626	-1.668	3.147	-3.147	4.626	1.668	1.479	0.676

Graph between chemical potential of metal halides is shown in the Graph 2.

Recently the order of acceptor strength in respect of interaction with nitrogen donors has been shown as below^[3c],

$$SnCl_4 > HgCl_2 > SnBr_4 > HgBr_2 > SnI_4 > CdCl_2 > HgI_2 > ZnCl_2 > CdBr_2 > ZnBr_2 > CdI_2 > ZnI_2$$

This order differs with the present work which is on account of change in donor atom from nitrogen to sulphur. This is in consonance with the HSAB principle.

Órganic CHEMISTRY An Indian Journal

Chemical potential of sulphur donors (μ_b)

Donor ability of sulphur donors (B) depends on the value of their chemical potential. As the value of chemical potential increases, the donor ability decreases i.e. the having lowest value of chemical potential can be treated as the best donor. Values of chemical potentials of sulphur donors are given in the Table-16. The value of chemical potential of $C_6H_{11}NS$ is lowest and the value of HCSNH₂ is highest. Thus the best sulphur donor is $C_6H_{11}NS$ and least donor is HCSNH₂. Order of

S.No.	Chem. For.	SB	Metal halide	SA	Difference between S_A and S_B
1	HCSNHC ₂ H ₅	0.676	SnBr_4	0.687	0.011
2	C ₆ H ₁₁ NS	0.670	SnBr_4	0.687	0.017
3	HCSNH ₂	0.664	SnBr_4	0.687	0.023
4	HCSNHCH ₃	0.660	SnBr_4	0.687	0.027
5	HCSN(CH ₃) ₂	0.657	SnBr_4	0.687	0.030
6	$C_3H_5NS_2$	0.603	$SnCl_4$	0.558	0.045
7	$C_3H_5NS_2$	0.603	SnBr_4	0.687	0.084
8	HCSN(CH ₃) ₂	0.657	$SnCl_4$	0.558	0.099
9	HCSNHCH ₃	0.660	$SnCl_4$	0.558	0.102
10	HCSNH ₂	0.664	$SnCl_4$	0.558	0.106
11	C ₆ H ₁₁ NS	0.670	$SnCl_4$	0.558	0.112
12	HCSNHC ₂ H ₅	0.676	$SnCl_4$	0.558	0.118
13	HCSNHC ₂ H ₅	0.676	SnI_4	0.937	0.261
14	C ₆ H ₁₁ NS	0.670	SnI_4	0.937	0.267
15	HCSNH ₂	0.664	SnI_4	0.937	0.273
16	HCSNHCH ₃	0.660	SnI_4	0.937	0.277
17	HCSN(CH ₃) ₂	0.657	SnI_4	0.937	0.280
18	$C_3H_5NS_2$	0.603	HgI_2	0.295	0.308
19	$C_3H_5NS_2$	0.603	ZnI_2	0.293	0.310
20	$C_3H_5NS_2$	0.603	CdI ₂	0.272	0.331
21	$C_3H_5NS_2$	0.603	SnI_4	0.937	0.334
22	HCSN(CH ₃) ₂	0.657	HgI_2	0.295	0.362
23	HCSN(CH ₃) ₂	0.657	ZnI_2	0.293	0.364
24	HCSNHCH ₃	0.660	HgI_2	0.295	0.365
25	HCSNHCH ₃	0.660	ZnI_2	0.293	0.367
26	$C_3H_5NS_2$	0.603	HgCl ₂	0.235	0.368
27	HCSNH ₂	0.664	HgI_2	0.295	0.369
28	HCSNH ₂	0.664	ZnI_2	0.293	0.371
29	C ₆ H ₁₁ NS	0.670	HgI_2	0.295	0.375
30	C ₆ H ₁₁ NS	0.670	ZnI_2	0.293	0.377
31	HCSNHC ₂ H ₅	0.676	HgI_2	0.295	0.381
32	HCSNHC ₂ H ₅	0.676	ZnI_2	0.293	0.383
33	$C_3H_5NS_2$	0.603	$ZnCl_2$	0.218	0.385
34	HCSN(CH ₃) ₂	0.657	CdI ₂	0.272	0.385
35	HCSNHCH ₃	0.660	CdI ₂	0.272	0.388
36	HCSNH ₂	0.664	CdI ₂	0.272	0.392
37	C ₆ H ₁₁ NS	0.670	CdI ₂	0.272	0.398
38	C ₃ H ₅ NS ₂	0.603	ZnBr ₂	0.204	0.399
39	HCSNHC ₂ H ₅	0.676	CdI ₂	0.272	0.404
40	C ₃ H ₅ NS ₂	0.603	$CdCl_2$	0.192	0.411
41	C ₃ H ₅ NS ₂	0.603	HgBr ₂	0.191	0.412

TABLE 16(a) : Values of S_A, S_B and their differences in as-

TABLE 16(a) :	Values of S ₄ ,	S_{R} and	their differ	ences in as-
cending order	1	D		

S.No.	Chem. For.	S _B	Metal halide	SA	Difference between
42	C ₃ H ₅ NS ₂	0.603	CdBr ₂	0.190	0.413
43	HCSN(CH ₃) ₂	0.657	HgCl ₂	0.235	0.422
44	HCSNHCH ₃	0.660	HgCl ₂	0.235	0.425
45	HCSNH ₂	0.664	HgCl ₂	0.235	0.429
46	C ₆ H ₁₁ NS	0.670	HgCl ₂	0.235	0.435
47	HCSN(CH ₃) ₂	0.657	$ZnCl_2$	0.218	0.439
48	HCSNHC ₂ H ₅	0.676	HgCl ₂	0.235	0.441
49	HCSNHCH ₃	0.660	$ZnCl_2$	0.218	0.442
50	HCSNH ₂	0.664	$ZnCl_2$	0.218	0.446
51	C ₆ H ₁₁ NS	0.670	$ZnCl_2$	0.218	0.452
52	HCSN(CH ₃) ₂	0.657	ZnBr ₂	0.204	0.453
53	HCSNHCH ₃	0.660	ZnBr ₂	0.204	0.456
54	HCSNHC ₂ H ₅	0.676	$ZnCl_2$	0.218	0.458
55	HCSNH ₂	0.664	ZnBr ₂	0.204	0.460
56	HCSN(CH ₃) ₂	0.657	CdCl ₂	0.192	0.465
57	HCSN(CH ₃) ₂	0.657	$HgBr_2$	0.191	0.466
58	C ₆ H ₁₁ NS	0.670	$ZnBr_2$	0.204	0.466
59	HCSN(CH ₃) ₂	0.657	CdBr ₂	0.190	0.467
60	HCSNHCH ₃	0.660	$CdCl_2$	0.192	0.468
61	HCSNHCH ₃	0.660	HgBr ₂	0.191	0.469
62	HCSNHCH ₃	0.660	CdBr ₂	0.190	0.470
63	HCSNH ₂	0.664	$CdCl_2$	0.192	0.472
64	HCSNHC ₂ H ₅	0.676	$ZnBr_2$	0.204	0.472
65	HCSNH ₂	0.664	HgBr ₂	0.191	0.473
66	HCSNH ₂	0.664	CdBr ₂	0.190	0.474
67	C ₆ H ₁₁ NS	0.670	$CdCl_2$	0.192	0.478
68	C ₆ H ₁₁ NS	0.670	HgBr ₂	0.191	0.479
69	C ₆ H ₁₁ NS	0.670	CdBr ₂	0.190	0.480
70	HCSNHC ₂ H ₅	0.676	$CdCl_2$	0.192	0.484
71	HCSNHC ₂ H ₅	0.676	$HgBr_2$	0.191	0.485
72	HCSNHC ₂ H ₅	0.676	CdBr ₂	0.190	0.486

donor ability of sulphur donors based on the value of chemical potential is as follows,

 $C_6H_{11}NS > HCSN(CH_3)_2 > CSNHC_2H_5 > HCSNHCH_3 > C_3H_5NS_2 > HCSNH_2$ Global softness (S_A and S_B)

Acidic strength of metal halide depends on the value of global softness (S_A). As the value of global softness increases, the acidic strength decreases. The global softness (S_A) values are lowest in chlorides and highest in iodides, in other words chlorides are harder acids as

OCAIJ, 6(2) June 2010

Full Paper

TABLE 17 : ΔN and ΔE of interaction of sulphur donors with $SnCl_4$

Lewis bases (B)	χа	χв	η_A	η_B	ΔN	ΔΕ
C ₃ H ₅ NS ₂	6.293	3.157	1.793	1.660	0.454	-0.712
C ₆ H ₁₁ NS	6.293	2.934	1.793	1.492	0.511	-0.859
HCSNH ₂	6.293	3.303	1.793	1.507	0.453	-0.678
HCSNHCH ₃	6.293	3.151	1.793	1.515	0.475	-0.746
HCSN(CH ₃) ₂	6.293	3.031	1.793	1.523	0.492	-0.803
HCSNHC ₂ H ₅	6.293	3.147	1.793	1.479	0.481	-0.756

TABLE 19 : ΔN and ΔE of interaction of sulphur donors with SnI₄

Lewis bases (B)	χа	χв	η_A	$\eta_{\rm B}$	ΔN	ΔE
C ₃ H ₅ NS ₂	5.428	3.157	1.069	1.660	0.416	-0.473
C ₆ H ₁₁ NS	5.428	2.934	1.069	1.492	0.487	-0.608
HCSNH ₂	5.428	3.303	1.069	1.507	0.413	-0.439
HCSNHCH ₃	5.428	3.151	1.069	1.515	0.441	-0.502
HCSN(CH ₃) ₂	5.428	3.031	1.069	1.523	0.463	-0.555
HCSNHC ₂ H ₅	5.428	3.147	1.069	1.479	0.448	-0.510

TABLE 21 : ΔN and ΔE of interaction of sulphur donors with ZnBr,

Lewis bases (B)	χа	χв	η_A	η_B	ΔΝ	ΔE
C ₃ H ₅ NS ₂	5.003	3.157	2.218	1.660	0.238	-0.220
C ₆ H ₁₁ NS	5.003	2.934	2.218	1.492	0.279	-0.289
HCSNH ₂	5.003	3.303	2.218	1.507	0.228	-0.194
HCSNHCH ₃	5.003	3.151	2.218	1.515	0.248	-0.230
HCSN(CH ₃) ₂	5.003	3.031	2.218	1.523	0.264	-0.260
HCSNHC ₂ H ₅	5.003	3.147	2.218	1.479	0.251	-0.233

TABLE 23 : ΔN and ΔE of interaction of sulphur donors with CdCl,

Lewis bases (B)	χа	χв	η_A	η_B	ΔN	ΔΕ
$C_3H_5NS_2$	5.354	3.157	2.112	1.660	0.291	-0.320
C ₆ H ₁₁ NS	5.354	2.934	2.112	1.492	0.336	-0.406
HCSNH ₂	5.354	3.303	2.112	1.507	0.283	-0.291
HCSNHCH ₃	5.354	3.151	2.112	1.515	0.304	-0.335
HCSN(CH ₃) ₂	5.354	3.031	2.112	1.523	0.320	-0.371
HCSNHC ₂ H ₅	5.354	3.147	2.112	1.479	0.307	-0.339

TABLE 25 : ΔN and ΔE of interaction of sulphur donors with CdI₂

Lewis bases (B)	χа	χв	η_A	η_B	ΔN	ΔΕ
$C_3H_5NS_2$	5.059	3.157	1.953	1.660	0.263	-0.250
C ₆ H ₁₁ NS	5.059	2.934	1.953	1.492	0.309	-0.328
HCSNH ₂	5.059	3.303	1.953	1.507	0.254	-0.223
HCSNHCH ₃	5.059	3.151	1.953	1.515	0.275	-0.263
HCSN(CH ₃) ₂	5.059	3.031	1.953	1.523	0.292	-0.296
HCSNHC ₂ H ₅	5.059	3.147	1.953	1.479	0.279	-0.266

Organic CHEMISTRY An Indian Journal

TABLE 18 : ΔN and ΔE of interaction of sulphur donors with $SnBr_{_4}$

Lewis bases (B)	χа	χв	η_A	η_B	ΔN	ΔΕ
$C_3H_5NS_2$	5.806	3.157	1.464	1.660	0.424	-0.562
$C_6H_{11}NS$	5.806	2.934	1.464	1.492	0.486	-0.698
HCSNH ₂	5.806	3.303	1.464	1.507	0.421	-0.527
HCSNHCH ₃	5.806	3.151	1.464	1.515	0.446	-0.592
HCSN(CH ₃) ₂	5.806	3.031	1.464	1.523	0.465	-0.645
HCSNHC ₂ H ₅	5.806	3.147	1.464	1.479	0.452	-0.601

TABLE 20 : ΔN and ΔE of interaction of sulphur donors with ZnCl₂

Lewis bases (B)	χа	χв	η_A	η_B	ΔN	ΔΕ
$C_3H_5NS_2$	-2.829	3.157	1.949	1.660	-0.829	-2.482
$C_6H_{11}NS$	-2.829	2.934	1.949	1.492	-0.837	-2.413
HCSNH ₂	-2.829	3.303	1.949	1.507	-0.887	-2.720
HCSNHCH ₃	-2.829	3.151	1.949	1.515	-0.863	-2.581
HCSN(CH ₃) ₂	-2.829	3.031	1.949	1.523	-0.844	-2.473
HCSNHC ₂ H ₅	-2.829	3.147	1.949	1.479	-0.872	-2.604

TABLE 22 : ΔN and ΔE of interaction of sulphur donors with ZnL,

-						
Lewis bases (B)	χа	χв	η_A	η_{B}	ΔN	ΔΕ
$C_3H_5NS_2$	4.789	3.157	1.921	1.660	0.228	-0.186
$C_6H_{11}NS$	4.789	2.934	1.921	1.492	0.272	-0.252
HCSNH ₂	4.789	3.303	1.921	1.507	0.217	-0.161
HCSNHCH ₃	4.789	3.151	1.921	1.515	0.238	-0.195
HCSN(CH ₃) ₂	4.789	3.031	1.921	1.523	0.255	-0.225
HCSNHC ₂ H ₅	4.789	3.147	1.921	1.479	0.241	-0.198

TABLE 24 : ΔN and ΔE of interaction of sulphur donors with CdBr₂

Lewis bases (B)	χа	χв	η_A	η_{B}	ΔN	ΔΕ
C ₃ H ₅ NS ₂	5.057	3.157	1.954	1.660	0.263	-0.250
C ₆ H ₁₁ NS	5.057	2.934	1.954	1.492	0.308	-0.327
HCSNH ₂	5.057	3.303	1.954	1.507	0.254	-0.222
HCSNHCH ₃	5.057	3.151	1.954	1.515	0.275	-0.262
HCSN(CH ₃) ₂	5.057	3.031	1.954	1.523	0.291	-0.295
HCSNHC ₂ H ₅	5.057	3.147	1.954	1.479	0.278	-0.266

TABLE 26 : ΔN and ΔE of interaction of sulphur donors with HgCl₂

Lewis bases (B)	χа	χв	η_A	$\eta_{\rm B}$	ΔN	ΔΕ
$C_3H_5NS_2$	6.083	3.157	1.739	1.660	0.431	-0.630
C ₆ H ₁₁ NS	6.083	2.934	1.739	1.492	0.487	-0.768
HCSNH ₂	6.083	3.303	1.739	1.507	0.428	-0.596
HCSNHCH ₃	6.083	3.151	1.739	1.515	0.451	-0.661
HCSN(CH ₃) ₂	6.083	3.031	1.739	1.523	0.468	-0.714
HCSNHC ₂ H ₅	6.083	3.147	1.739	1.479	0.456	-0.670

HaBr

IIgDI ₂						
Lewis bases (B)	χа	χв	η_A	η_{B}	ΔN	ΔE
$C_3H_5NS_2$	5.667	3.157	1.611	1.660	0.384	-0.482
C ₆ H ₁₁ NS	5.667	2.934	1.611	1.492	0.441	-0.602
HCSNH ₂	5.667	3.303	1.611	1.507	0.379	-0.448
HCSNHCH ₃	5.667	3.151	1.611	1.515	0.403	-0.506
HCSN(CH ₃) ₂	5.667	3.031	1.611	1.523	0.421	-0.554
HCSNHC ₂ H ₅	5.667	3.147	1.611	1.479	0.408	-0.514

TABLE 27 : ΔN and ΔE of interaction of sulphur donors with

Graph 1 : Interaction energy of sulphur donors with the acceptor ${\bf SnCl}_{4}$

compared to their bromide and iodide counterparts in terms of HSAB principle. The scale of softness of various halides is as given in TABLE 15. Order of global softness of metal halides is given below,

 $CdBr_2 > HgBr_2 > CdCl_2 > ZnBr_2 > ZnCl_2 > HgCl_2$ $> CdI_2 > ZnI_2 > HgI_2 > SnCl_4 > SnBr_4 > SnI_4$

Analysis of the equation (3) indicates that for a given values of S_A the larger the value of S_B , the better, while equation (4) indicates that for the same values of S_{A} the smaller value of $S_{\rm B}$ the better. Since the total energy is given by the summation of these two terms, it seems that the best situation corresponds to the average between the two extreme situations that is $S_A \approx S_B$, which is precisely the global HSAB principle. A similar analysis, based on the two opposing tendencies, was first given by Chattaraj et al. The S_{A} value of $SnBr_{A}$ is 0.687 and S_{B} value of HCSNHC₂H₅ is 0.676. Since the two values are almost equal the best interaction is shown between them. This observation is in conformity with the global HSAB principle. TABLE 16(a) shows the values of S_A , S_B and their differences arranged in ascending order. As we move down to this Table the strength of interaction decreases. The weakest interaction is between the HCSNHC₂H₅ and the metal halide $CdBr_2$ because the difference between S_A and S_B is highest in this case.

Εμ

For a molecule μ measures the ability to attract elec-

TABLE 28 : ΔN and ΔE of interaction of sulphur donors with HgI₂

Lewis bases (B)	χа	χв	η_A	η_{B}	ΔN	ΔΕ
$C_3H_5NS_2$	5.321	3.157	1.391	1.660	0.355	-0.384
$C_6H_{11}NS$	5.321	2.934	1.391	1.492	0.414	-0.494
HCSNH ₂	5.321	3.303	1.391	1.507	0.348	-0.351
HCSNHCH ₃	5.321	3.151	1.391	1.515	0.373	-0.405
HCSN(CH ₃) ₂	5.321	3.031	1.391	1.523	0.393	-0.450
HCSNHC ₂ H ₅	5.321	3.147	1.391	1.479	0.379	-0.412
0	,					

Graph 2 : Graph between chemical potential of metal halides

trons to itself. If two molecules (A and B) are brought together electrons will flow from the one, which has lower value of μ to that which has higher value. At equilibrium a single value of μ will exist through out. $\Delta E\mu$ is the energy transfer on account of this reshuffling.

The $\Delta E\mu$ shows that chlorides have higher value than bromide and iodide. The sequence is chloride > bromide > iodide. The values do not demonstrate the order of acceptor or base strength.

Comparison with ΔN

Metal ligand bond strength between interaction of acceptor (A) and ligand (B) has also been calculated by solving the following equations for shift in charge or charge transfer ΔN and lowering of energy $\Delta E^{[23]}$ on formation of A-B.

$$\Delta \mathbf{N} = (\mathbf{\chi}^{\mathbf{o}}_{\mathbf{A}} - \mathbf{\chi}^{\mathbf{o}}_{\mathbf{B}}) / 2(\mathbf{\eta}_{\mathbf{A}} + \mathbf{\eta}_{\mathbf{B}})$$
(12)

$$\Delta \mathbf{E} = -(\boldsymbol{\chi}^{\mathbf{o}}_{\mathbf{A}} - \boldsymbol{\chi}^{\mathbf{o}}_{\mathbf{B}})^2 / 4(\boldsymbol{\eta}_{\mathbf{A}} + \boldsymbol{\eta}_{\mathbf{B}})$$
(13)

Metal ligand bond strength between interaction of acceptor (A) and ligand (B) increases as the lowering in energy increases. Further this bond strength decreases as the charge transfer increases. The values of ΔN , ΔE (calculated in eV) are included in TABLE 17 to TABLE 28. All the energies calculated in this chapter e.g. HOMO energy, LUMO energy etc. are in electron volts (eV).

A reference to the TABLE 17 to TABLE 28, indi-

cates that all the three parameters viz interaction energy (E_{int}) , shift in charge (ΔN) , and lowering of energy (ΔE) provide results which are in consonance to each other, all of them have reliable predictive power.

CONCLUSIONS

The acceptor strength of all the twelve metal halides can be arranged in the following order depending on the values of chemical potential (μ_p)

 $\begin{array}{l} \mathbf{SnI}_4 < \mathbf{SnBr}_4 < \mathbf{CdCl}_2 < \mathbf{CdI}_2 < \mathbf{SnCl}_4 < \mathbf{ZnCl}_2 < \\ \mathbf{HgCl}_2 < \mathbf{CdBr}_2 < \mathbf{HgI}_2 < \mathbf{ZnI}_2 < \mathbf{HgBr}_2 < \mathbf{ZnBr}_2 \end{array}$

The chemical potential (μ_B) values of indicate the same order of base strength as is indicated by interaction energy.

The $C_6H_{11}NS$ is the strongest base against all the acceptors (A). HCSNH₂ is the weakest base against all the acceptors (A).

 $E\mu$ is the energy transfer on account of flow of electrons from lower value of μ to high value of μ . The $E\mu$ does not demonstrate the order of acid or base strength.

The best interaction is when global softness values of acid and base are equal i.e. $S_A \approx S_B$.

The interaction energy (E_{int}) for interaction between HgBr₂ and C₆H₁₁NS is lowest and is equal to -31.762; the next is for interaction of HgCl₂ with the base C₆H₁₁NS, the value being -29.738.

Order of metal-ligand bond strength for all the 72 interactions between sulphur donors and metal halides are shown in the decreasing order in the TABLE 29.

The values of interaction energy (E_{int}) above - 14.945 indicate weak interaction between metal halide and sulphur donors.

The least interaction is between CdI_2 and $HCSNH_2$ as the value of interaction energy is highest and equal to -6.977 eV.

Order of stable complex formation of sulphur donors (B) is same with all the halides of tin, zinc, cadmium and mercury.

All the results of ΔN and ΔE show almost the same sequence as predicted by interaction energy.

REFERENCES

[1] J.L.Gazquez; J.Phys.Chem., 101, 8967 (1997).

Organic CHEMISTRY An Indian Journal

- [2] L.T.Nguyen, T.N.Le, F.DeProft, A.K.Chandra, W.Langenaeker, M.T.Nguyen, P.Geerlings; J.Am.Chem.Soc., 121, 5992 (1999).
- [3] (a) R.G.Parr, W.Yang; Density-Functional Theory of Atoms and Molecules (New York, Oxford University Press), (1989); (b) P.Geerlings, F.DeProft, W.Langenaeker; Adv.Quantum Chem., 33, 303 (1999); (c) P.P.Singh, Singh Divya, S.Ahmad; Journal of Molecular Structure, THEOCHEM 905 13 (2009).
- [4] (a) A.K.Chandra, M.T.Nguyen; J.Phys.Chem.A, 102, 6181 (1998); (b) A.K.Chandra, Michalak, M.T.Nguyen, R.F.Nalewajski; J.Phys.Chem.A, 102, 10182 (1998).
- [5] (a) F.DeProft, S.Amira, K.Choho, P.Geerlings;
 J.Phys.Chem., 98, 5227 (1994); (b) W.Langenaekar, M.De Decker, P.Geerlings, P.Raeymaekars;
 J.Mol.Struct.(Theochem.), 207, 115 (1990).
- [6] R.G.Pearson; J.Am.Chem.Soc., 85, 3533 (1963).
- [7] K.D.Sen; Chemical Hardness (Structure and Bonding) (Berlin: Springer-Verlag), 80, (1993).
- [8] (a) R.G.Parr, R.G.Pearson; J.Am.Chem.Soc., 105, 7512 (1983); (b) R.G.Parr, R.A.Donnelly, M.Levy, W.E.Palke; J.Chem.Phys., 68, 3801 (1978); (c) R.G.Pearson; J. Am.Chem.Soc., 107, 6801 (1985).
- [9] (a) R.G.Parr, P.K.Chattaraj; J.Am.Chem.Soc., 113, 1854 (1991); (b) R.G.Pearson; J.Chem.Edu., 64, 561 (1987).
- [10] (a) R.G.Pearson, W.E.Palke; J.Phys.Chem., 96, 3283 (1992); (b) D.Datta; J.Phys.Chem., 96, 2409 (1992); (c) S.Pal, N.Vaval, R.K.Roy; J.Phys.Chem., 97, 4404 (1993).
- [11] (a) R.G.Parr, W.Yang; J.Am.Chem.Soc., 106, 4049 (1984); (b) Y.Yang, R.G.Parr; Proc.Natl.Acad. Sci.USA, 821, 6723 (1985); (c) J.Garza, R.Vargas, A.Cedillo, M.Galván, P.K.Chattaraj; Theor.Chem. Acc., 115, 257 (2006).
- [12] W.Yang, W.Mortier; J.Am.Chem.Soc., 108, 5708 (1986).
- [13] (a) R.K.Roy, S.Krishnamuthy, P.Geerlings, S.Pal;
 J.Phys.Chem.A, 102, 3746 (1998); (b) R.K.Roy,
 S.Pal, K.Hirao; J.Chem.Phys., 110, 8236 (1999).
- [14] (a) R.G.Parr, L.V.Szentpaly, S.Liu; J.Am.Chem. Soc., 121, 1922 (1999); (b) P.K.Chattaraj, B.Maiti, U.Sarkar; J.Phys.Chem.A, 107, 4973 (2003); (c) P.K.Chattaraj; J.Phys.Chem.A, 105, 511 (2001); (d) A.Tanwar, B.Bagchi, S.Pal; J.Chem.Phys., 125, 214304 (2006).
- [15] J.L.Gazguez, F.Mendez; J.Phys.Chem., 98, 4591 (1994).

- [16] (a) S.Pal, K.R.S.Chandrakumar; J.Am.Chem.Soc., 122, 4145 (2000); (b) K.R.S.Chandrakumar, S.Pal; J.Phys.Chem.A, 106, 5737 (2002); (c) K.R.S.Chandrakumar, S.Pal; J.Phys.Chem.A, 105, 4541 (2001).
- [17] (a) F.De Proft, P.Geerlings; Chem.Rev., 101, 1451 (2001); (b) P.Geerlings, F.De Proft, W.Langenaeker; Chem.Rev., 103, 1793 (2003); (c) F.Mendez, J.Tamariz, P.Geerlings; J.Phys.Chem.A, 97, 4059 (1993).
- [18] R.S.Mulliken, W.B.Pearson; Annu.Rev.Phys. Chem., 13, 107 (1962).
- [19] R.S.Mulliken; J.Chem.Phys., 2, 782 (1934).
- [20] M.Berkowitz; J.Am.Chem.Soc., 109, 4823 (1987).
- [21] R.G.Parr, W.Yang; Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, (1989).
- [22] Density Functional Methods in Chemistry, Edited by J.Babanowski, J.Andzelm; Springer, New York, (1991).
- [23] T.Ziegler; Chem.Rev., 91, 651 (1991).

- [24] Theoretical and Computational Chemistry, Modern Density Functional Theory, Edited by P.Politzer, J.Seminario; Elsevier, Amsterdam, 2, (1995).
- [25] R.G.Parr, R.A.Donnelly, M.Levy; Am.Chem.Soc., 105, 1503 (1983).
- [26] R.G.Parr, W.Yang; J.Am.Chem.Soc., 106, 4049 (1984).
- [27] R.G.Parr; J.Am.Chem.Soc., 105, 7512 (1983).
- [28] R.G.Parr, R.G.Pearson; J.Am.Chem.Soc., 105, 7512 (1983).
- [29] K.D.Jordon, P.D.Burrow; Am.Chem.Res., 11, 341 (1978).
- [30] J.L.Gazquez; In Chemical Hardness, Structure and Bonding, 80 K.D.Sen, (Ed.); Berlin, Spinger-Verlag, (1993).
- [31] R.G.Parr, J.L.Gazaquez; J.Phys.Chem., 97, 3931 (1993).
- [32] F.Mendez, J.L.Gazquez; Proc.Indian Acad.Sci. Chem.Sci., 106(2), 183 (1994).
- [33] R.G.Parr, P.K.Chattaraj; J.Am.Chem.Soc., 113, 1854 (1991).