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Abstract  

Power spectrum of density variation of matter dominated era is calculated to prove that structure formation in the universe starts in the quasi-linear regime. 

Dimensionless power spectra for 1-halo and 2-halo for baryonic matter are calculated and compared with the 1-halo and 2-halo power spectra for dark 

matter. The higher values obtained for baryonic matter indicates over dense regions of baryonic matter leading to collapse to form large scale structures. 

The power spectrum values lead to cosmological bias values in unperturbed and perturbed universe. The obtained bias values being approaching unity 

indicate formation of large scale structure of galaxies starts in the quasi-linear regimes.  

Keywords: Cosmological bias; Large scale structure; Quasi linear regime; Power spectrum; Dark matter; Baryonic matter 

 

  

Introduction  

The concept of galaxies being biased tracers with respect to dark matter was introduced by Kaiser Nick [1]. Bias, which depends on the 

length scale, refers to the ratio of the baryonic matter density to the underlying dark matter density. Dark matter is invisible, as it does not 

emit radiation and its presence is inferred by its gravitational effect. In order to study bias, knowledge of the inhomogeneity in density is 

required. Models such as the spherical collapse model, halo model, local bias model and linear and non-linear perturbation models are 

required to obtain density contrast of baryonic matter and dark matter. On large scale, the universe is homogeneous and isotropic and hence 

does not lead to bias. But bias is prominent in small scale. Gravity equally affect both baryonic matter and dark matter. Baryonic matter is 

acted upon by some other forces like radiation pressure, magnetic field etc. While dark matter only affected by gravity and behaves like a 

potential well inside the halo into which the baryonic matter is going on accumulating to form small structures first further leading to 

formation of large scale structures. So the distribution of galaxies and the dark matter within a given halo can be used to estimate the statistical 

properties of the dark matter density in the quasi-linear regime, where the density fluctuation (δ) approaches unity. These galaxies are the 

biased tracers of the dark matter in the halo. Under these conditions the matter is in virial equilibrium, where the desired physical properties 

of the halo can be estimated [2]. The spherical collapse model was first studied by Gunn and Gott [3]. This is the simplest non-trivial model 

for the way an object like galaxy or cluster of galaxies breaks away from the general expansion. In the model, the universe is spherically 

symmetric about one spot and the matter is an ideal fluid with zero pressure. At the initial epoch everything is expanding smoothly as the 

universe is expanding though gravity acts there. In this paper, dimensionless power spectra for 1-halo and 2-halo for baryonic matter are 

calculated and compared with the 1-halo and 2-halo power spectra for dark matter. The higher values obtained for baryonic matter indicate 
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over dense regions of baryonic matter leading to form large scale structures. The power spectrum values lead to cosmological bias values in 

unperturbed and perturbed universe. The obtained bias value being approaching unity indicates the start of formation of large scale structures 

of galaxies in the quasi-linear regime.  

 

Methods 

Analysis of halo power spectrum  

Fry and Gatzanaga [4] assume that the density contrast in halo distribution, 𝛿ℎ can be expressedas a non-linear function of the local density 

contrast of dark matter (DM) , 𝛿𝑚: 

 

 𝛿ℎ = 𝑏0 + 𝑏1δ𝑚 +
𝑏2

2!
 𝛿𝑚

2 + ⋯ (1) 

In this section we evaluate the bias values (𝑏0, 𝑏1, 𝑏2) under certain assumptions, which follow and show using these values that in the quasi-

linear regime, the clustering of galaxies is more due to many forces like gravity, magnetic field, radiation pressure etc., than clustering of 

dark matter which is only affected by gravity. 

 

We assume an initial spectrum of the density fluctuation field as 

 𝑃0(k) =
A

k3 2⁄  (2) 

In accordance with [3], where the authors have considered this spectrum as a possible shape of the power spectrum on cluster-like scales in 

cold dark matter (CDM) models. In terms of variance 𝜎2(𝑅) on scale R, the dimension less power spectrum as per [3] 

 ∆0
2(k) =  

15𝛿𝑠𝑐
2

16√𝜋
(𝑘𝑅∗)

3

2 =
k3

2𝜋2 𝑃0(k) (3) 

Where, 𝛿𝑠𝑐
2 =  𝜎2(𝑅). 𝛿𝑠𝑐 is the critical density for an object to collapse. 

We assume that the density around a virialized halo is given by [4]  

 𝜌(𝑟|𝑚)

𝜌̅
=

2∆nl

3𝜋
∁3(𝑚)

𝑦−2

1+𝑦2 (4) 

Where y =
𝑟

𝑟𝑠
 , 𝑟𝑠 is the core radius of the halo profile, ∁ is the halo concentration parameter, ∆nl is the non-linear dimensionless power 

spectrum. For which the normalized Fourier transform is  

𝑢(𝑘|𝑚) =
1−𝑒−𝑘𝑟𝑠

𝑘𝑟𝑠
 (5) 

Where 𝑟𝑠 = (
𝑚

𝑚∗
)

𝛾

, 𝛾 is a numerical coefficient independent of scale. The dimensionless 1-halo and 2-halo power spectrum for massive and 

less concentrated halo, for γ =
1

6
 , are given by 

 ∆1ℎ
2 (k) =

2∆nl

3π
∁∗

3𝛋 (1 +
1

√1+4𝛋
−

2

√1+2𝛋
) (6) 

 Δ2ℎ
2 (k) = 𝐵2(𝑘)Δ0

2(k) = 𝐵2(𝑘)
15𝛿𝑠𝑐

2

16√𝜋
(Δ𝑛𝑙

1 3⁄
∁∗)

3 2⁄
𝜅3 2⁄  (7) 

B(k) is known as bi-spectrum which is given by 

𝐵(𝑘) =
1

𝛋
[

2

𝛿𝑠𝑐
− 1 + √2𝛋 (1 −

1

𝛿𝑠𝑐
) −

1

𝛿𝑠𝑐√1+2𝛋
] (8) 
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Where 𝛿𝑠𝑐
2 =  𝜎2(𝑅). 𝛿𝑠𝑐 is the critical density for an object to collapse. Dimensionless power spectrum for 1-halo term and 2-halo term for 

more massive and more concentrated halo have been derived analytically [4] which are as follows: 

 ∆1ℎ
2 (k) =

2∆nl

π
∁∗

3𝛋𝟑 (
𝟏−𝐞−𝛋

𝛋
)

𝟐

 (9) 

 

 ∆2h
2(k) = (

1−𝑒−𝜅

𝛋
)

2

∆0
2(k) (10) 

Equation-4 and 5 explains the variation of concentration parameter (𝐶) with halo mass (m). Which further contributes to the total power. At 

small scale most of the power comes from 2-halo terms. At large k 1-halo term dominates the power. 

Where 𝛋 is called as kappa and is given by 

𝛋 = 𝑘𝑟𝑠 =
𝑘𝑅∗

∁∗Δ𝑛𝑙

1
3

(
m

m∗
)

γ+
1

3
 (11) 

Kappa is a distance in the unit of scale radius. The non-linear dimensionless power spectrum Δ𝑛𝑙 = (
𝑅𝑡𝑎

𝑟𝑣𝑖𝑟
)

3

=8. Assuming halos to be virialized 

at half the turn around time 𝑟𝑣𝑖𝑟 = 
𝑅𝑡𝑎

2
. R and m are the initial size and mass of the halo. 𝑅∗ 𝑎𝑛𝑑 m∗ are the characteristic size and mass of 

the halo respectively [5-7]. In Einstein de-Sitter Cosmology, δsc(z) = 1.686, and for initial power spectrum 𝜎2(𝑚)=0.5, at the turn around 

epoch, since 

𝜈 =
𝛿𝑠𝑐

2

𝜎2(𝑚)
= (

𝑚

𝑚∗
)

1

2
 (12) 

We have 
m

m∗
= 32.312 . Where 𝜈 defines the characteristic mas of the halo. Now straightforwardly we have 

𝑅

 𝑅∗
= (

m

m∗
)

1

3
 (13) 

Or, 𝑅∗ = 0.313𝑅. The halo concentration parameter in NFW models are taken to be in the range 4-40 [8]. Choosing the value of ∁(𝑚)=4 [1] 

 ∁∗=
∁(𝑚)

(
𝑚∗
𝑚

)
𝛾 =1.255 (14) 

Where 𝛾 is a numerical coefficient independent of scale. The value of 𝛾 = −
1

3
 for more massive and more concentrated halo. From equation 

6, Kappa κ = 0.783 . The variance 𝜎2(𝑅) is given by [4] 

 𝜎2(𝑅) =
16√π

15
 

A

2π2  R−
3

2 (15) 

The value of A can be obtained as 

 𝐴 =
0.5×15

16
 
2π2

√π
 R

3

2 (16) 

∆0
2(k) from equation 3 can evaluated by using 𝑘 =

2𝜋

𝑅
 as ∆0

2(k) = 4.165.  ∆1ℎ
2 (k)=2.323 using equation-4 and ∆2ℎ

2 (𝑘)=2.002 using equation-

5. We have 

 ∆ℎ
2 = ∆1ℎ

2 + ∆2ℎ
2 = 4.325 (17) 

 

 

The density contrast in halo matter power spectrum is then 
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 𝛿ℎ = √(2π2 × ∆ℎ
2) = 9.237 (18) 

  

  

Analysis of dark matter power spectrum 

For an Einstein de-sitter universe the solution to the density field 

 𝛿(𝑥) can be expressed in terms of the Fourier transform of the initial fluctuation 𝛿(𝑘) [5] 

  

 δ(1)(x)= ∫
𝑑3𝑘

(2𝜋)
3
2

 𝛿(𝑘)𝑒𝑖𝑘.𝑥 (19) 

 〈δ(1)(x)〉2=∫
𝑑3𝑘1

(2𝜋)
3
2

d3k2

(2𝜋)
3
2

𝛿(𝑘1)𝛿(𝑘2)𝑒𝑖𝑘1.𝑥1  𝑒𝑖𝑘2.𝑥2 (20) 

 = ∫ d3k  P(k)= ∫ d3k  P(k) 𝑊2(𝑘𝑅)= 𝜎2(𝑅) (21) 

The window function is 𝑊2(𝑘𝑅) = 1 for kR≪ 1, and the delta function 𝛿𝐷(k1 + k2) = 1 for 𝑘1 = −𝑘2. For R=8ℎ−1𝑀𝑃𝐶, k=1ℎ 𝑀𝑃𝐶−1 , 

 〈δ(1)(x)〉2 = 0.5 . The first order density spectrum for matter is P1m(k) = |δ1(k)|2=0.5 . The dimensionless power spectrum for matter is 

 ∆1𝑚
2 (k) = 

𝑘3

2𝜋2 P1m(k) =0.025 (22) 

The unit of power spectrum is (h−1MPC)3.  

The second order density field of matter is  

  δ(2)(x) = ∫
𝑑3𝑘1

(2𝜋)
3
2

d3k2

(2𝜋)
3
2

 𝛿(𝑘1) 𝛿(𝑘2) ×  𝑁(𝑝)(𝑘1, 𝑘2) 𝑒𝑖(𝑘1+𝑘2).𝑥 (23) Where 

𝑁(𝑝)(𝑘1, 𝑘2) =
𝑘1.𝑘2

(𝑘2)2 = 
𝑘1.𝑘2𝑐𝑜𝑠θ

(𝑘2)2  = 𝑐𝑜𝑠𝜃 

In terms of the loop function [9-11], δ(2)(x) can be written as 

= ∫ d3k  P(k) 

= ∫ d3k  P(k) 𝑊2(𝑘𝑅)= 𝜎2(𝑅) = 0.5 

 〈δ(2)(x)〉2 = (0.5)2 = 0.25 (24) 

Now 2nd order density power spectrum for matter is P2m(k) = |δ2(k)|2= 0.25 and hence dimensionless power spectrum for matter is 

∆2𝑚
2 (k) = 

𝑘3

2𝜋2 P2m(k)(h−1MPC)3 

= 
0.25

2π2 =0.012 (25) 

  

Calculation of bias  

It is the square root of ratio of halo matter power spectrum to the dark matter power spectrum. 

Bias 𝑏1 =  √
∆1ℎ

2

∆1𝑚
2 =9.639 (26) 

Bias 𝑏2 = √
∆2ℎ

2

∆2𝑚
2 = 12.916 (27) 

Using equation (1), 𝑏0 can evaluated as  
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b0 = 0.809 (28) 

TABLE 1. [∆_h]2 represents dimensionless power spectrum of Halo profile and [∆_m]2 represents dimensionless matter power 

Spectrum, b represents bias values. 

Sl. No. ∆𝒉
𝟐 ∆𝒎

𝟐  b 𝒃𝟎 

1 2.323 0.025 9.639 0.809 

2 2.002 0.012 12.916 

 

 

We calculated bias in small scales as most of the power comes from both the halo terms (TABLE 1 and FIG.1). 

 

 

FIG. 1. It represents the graph of power spectrum versus bias. It compares the value of bias of power spectrum of halo profile and 

that of dark matter. 

 

Result and Discussion 

The values of bias has been studied analytically and found as 𝑏0 = 0.809, 𝑏1 = 9.639, 𝑏2 = 12.916. The value of 𝑏0 clearly indicates that 

clustering of baryonic matter and clustering of dark matter are almost equal. That means this is the quasi-linear regime where large scale 

structure formation starts and being transformed from linear to nonlinear regime which is indicated by the increased value of bias values 

b1and 𝑏2. From the graph one can observe that with increase of bias, the halo matter power spectrum increases. But the dark matter power 

spectrum decreases with increase of bias. That means the clustering of galaxies are more under the action of different forces including gravity 

than the clustering of dark matter under the force of gravity only to form the large scale structures [12].  

 

Conclusion 

We have calculated the bias values b0, 𝑏1, 𝑏2for baryonic matter and dark matter using the 1-halo and 2-halo power spectra. From our study, 

we find that the dimensionless power spectrum for baryonic matter increases at a faster rate than that for dark matter. In equation (1), in 

Taylor expansion of density perturbation the cosmological bias values increases. The lowest value b0 approaching 1, indicates the quasi-
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linear regime where the baryonic matter (under the action of gravity as well as radiation force and magnetic field etc) accumulates into the 

potential well of dark matter (affected by gravity only) to form small structures first. Which further leads to large scale structures we see 

today. The largest values of bias indicate the non-linearity domain where the formation of large scale structure formation is more complex 

and can’t studied by analytic method. It can be obtained by simulation only. 
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