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ABSTRACT

Non-isothermal kinetics of solid-state decomposition of Polymethyl Methacrylate [PMMA Mw: 1.5x10% has been
investigated under nitrogen atmosphere. Thermal data deduced through simultaneous thermogravimetric-differen-
tial thermal analysis -differential thermo gravimetric [TG-DTA-DTG] was used for calculations of thermodynamic
parameters through Horowitz-Metzger and coats-Redfern methods al ong with kinetics and mechanism of degrada-

tions. © 2008 Trade Sciencelnc. - INDIA

INTRODUCTION

Thequdlity control and assessment intheindustria
polymers have been found to betediousand aseries of
experimentd techniquesweredeve oped sincepast few
decades*2. Among such techniques, thermo analytical
methods has emerged asarapid and cost effective sub-
stitute over other anaytica methodswith reproducible
results®4 Most of themodern chemica and metallurgi-
cd industriesempl oy processinvolving solid-state gas-
solidinterfacereactions. A detailed knowledge of the
thermodynami cs, kinetics and reaction mechanismsof
thesethermally induced processesisof immensehelp
to optimizeand control the operating parameters|ead-
ing to design of proper process equipment. Thermal
andysistechniqueslikethermogravimetry (TG), differ-
entia therma analysis(DTA) etc, wherethe property
of asubstance measured, asafunction of temperature
isextremely useful inthiscontext!™. In addition, if real
timeandysisof theproduct gasesevolved during ather-

mally induced reaction will greatly enhancethe possi-
bility of correctly interpreting thekinetic dataand arriv-
Ing a most appropriate mechanism governing the pro-
cess. Thus, knowledge of single particlekineticsbe-
comesapre-requisitefor studying interface transport
phenomenabetween moving gas stream and porous of
solid material §°.Such single particlekinetics can be
easly gudied throughsmultaneousTG-DTA-DTG The
technique TG-DTA-DTGisfrequently used asameans
of assessing thetherma stability and conveniently pro-
videva uableinformation about kineticsand thermody-
namics of the solid state decompositionsof polymers
and related heat resistant material §°9.

MATERIALSAND METHODS

PMMA with molecular mass (PMMA Mw:
1.5x10% was synthesized through AIBN initiated free
radica polymerization of freshly distilled monomer at
100+1°C. Themolecular massof synthesized PMMA
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was deduced over Varian Pro Star 230 HPLC/GPC
system coupled with RI detector. THF was used as
mobile phaseat theflow rateof 1.0mL/min.
Thermal characterization of PMMA was made
through smultaneousTG-DTA-DTG over NETZSCH-
Geratebau GmbH Thermal Analyzer model Perkin
Elmer (Pyris Dimond) 1000°C. Thesamplesizewas
10.95 mg. The sampleswere allowed to decomposed
innitrogen at heeting rate of 26°C/5.0 (Cel/min)/1000°C
usingauminaasareference TABLE 1. Thermal data
were used for cal culations of thermodynamic param-
etersthrough Horowitz-Metzger (HM)[™ and coats-
Redfern (CR) methods TABLE 218 .Non-isothermal
kinetics of solid-state decomposition of sampleshas
been calculated from TG datato ascertaintherate con-
trolling process according to the procedure reported
by Sestak Berggren and Satava®. In this procedure
evauationsweremadefrom, different integral formsof
kinetic expressions and the declaring rate equation
based on diffusion was studied in terms of parabolic
law satisfied to onedimensional transport (D,), twodi-
mensiond diffuson(D,), threedimensiond diffusionac-
cording to Jander equation (D,) and threedimensiona
diffusonaccordingto Gingling-Brounshteinequation(D,)
andtheratelawsat onedimensional, zero order (R)),
twodimensiond; cylindrica symmetry (R,) andthreedi-
mensiond spherica symmetry (R,) TABLE 3.

RESULTSAND DISCUSSION

Therma decompositionof PMMA wasinvestigaeted
through simultaneous TG-DTA-DTG in nitrogen.
PMMA showed two step decomposition figurel, with
increasing order of weight lossat temperatureranging
100-500°C. Within thistemperaturerange, PMMA has
shown maximum of 16% weight residueat 300°C. This
wasfurther supported withaDTA endotherm at 275°C
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TABLE 1. Thermal propertiesof PMMA

Thermal properties Temperature (°C) Assignment
TG [Weight residue

(%)/°C] 100 0.64
200 448

300 16.00

- 400-500 35.2

DTA [?H (°C/ m¥ mg)] 275 315
DTG[°C/ mg/ min] 143 0.2
- 280 0.1
330 0.4

TABLE 2: Kinetic and thermodynamic data of solid state
decomposition of PMMA

Reaction E z AS
order (n) Method (kg/mol. x10%) (min™) (IK Ymin)
0 CR 48.804 5731 -13.456
HM 82.764 6.130 -12.886
1 CR 56.328 2.894 -20.497
HM 100.987 6.876  -7.342
2 CR 80.6732 5.895 -16.8876
HM 145.870 10.976 -0.98534
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Figurel: TG-DTA-DTG spectrumof PMMA

associated with AH (°C/mJ/mg) as31.5.A three suc-
cessive DTG profileswere shown by PMMA at 143,
280 and 330°C respectively, corresponding to their
respectiverateof decompositionsranging 0.1-0.4with
maximum at 330°C TABLE 1.

Thekinetic and thermodynamic dataof solid state
decomposition of PMMA deduced through CR figures
2(a-c) and HM figures 3(a-c) methods and are sum-
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Figure2(a): CR plot of PMMA for n=0, (b): CR plot of PMMA for n=1, (¢): CR plot of PMMA for n=2
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Figure4: Kinetic modelsof solid state decomposition of
PMMA

TABLE 3: Mechanism of solid state decomposition verified
for PMMA

1-dimensional diffusion

(Parabolic law)
2-Dimensional diffusion,
cylindrical symmetry
3-Dimensional diffusion, spherical
symmetry (Jander equation)
3-Dimensional diffusion, spherical
symmetry (Giastiling Brownshtein
equation)
Random nucleation; One nucleus

Dl (lz:kt

D, (1-o)[-In (1-0)]+a=kt

D5 [1-(1-o) ") ’=kt

D, (1-2-a/3-(1-a)*=kt

Fi, —In (1-a)=kt on each particle (Mampel
equation)
v2_ Random nucleation (Avrami
Az [-In(1-a)] "=kt equation I)
u3_ Random nucleation (Avrami
As [In(1-a)] =kt equation I1)

Phase boundary reaction;
cylindrical symmetry

Phase boundary reaction; spherical
symmetry

marizedin TABLE 2. Itisevident that both of themeth-
odshave rendered alarge discrepancy towards energy
of activation, frequency factor and entropy change as-
sociated with solid state decomposition of PMMA at
al theordersranging 0.0-2.0.In general, HM method,
has rendered higher values of theenergy of activation
and frequency factors over CR method. Both of the
methodsindicated negative entropy changeindicating

R, 1-(1-a)"%=kt

Rs 1-(1-o0) =kt
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Figure3: (a): HM plot of PMMA for n=0, (b): HM plot of PMMA for n=1, (c): HM plot of PMMA for n=2

0 o

o
o0 =200

gla)

1T(KY)

heat resistant characteristicsof PMMA .

The mechanism of solid state decomposition of
PMMA hasbeen verified through investigation of vari-
ouskineticmoddsTABLE 3. Thiswasstudiedinterms
of variation g (a) functionswith 1/T. The TG dataindi-
cated that the decomposition of PMMA was executed
to higher g(a) functions corresponding to varioustype
of random nucleation models, followed by 2-dimen-
sond diffuson(cylindricd symmetry),1-dimensond dif-
fusion, (paraboliclaw), phase boundary reaction (cy-
lindrical symmetry)phaseboundary reaction (spherica
symmetry) and 3-dimensiond diffusion, spherica sym-
metry (Giadtiling Brownshtein equation) ,3-dimensiond
diffusion, spherica symmetry (Jander equation) respec-
tivelyfigure4.

CONCLUSION

PMMA with molecular mass Mw: 1.5x10*was
synthesized through freeradical polymerization. The
samplewas characterized through HPLC/GPC and Si-
multaneousTG-DTA-DTGinnitrogen. TG datawere
investigated for theeva uation of nonisotherma kinet-
icsand thermodynamics of the solid state decomposi-
tion of PMMA. Thedataindicated that the energy of
activation, frequency factor and entropy change corre-
sponding to decomposition of PMMA werehigher for
Horwertz Metzer over Coatsand Redfern methods. In
generd, hedecomposition of PMMA hassatisfied pos-
sblekineticmodds.
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