

Research | Vol 15 Iss 4

Structure of M (I): Ternary Gamma-Semigroups

Vasantha M^1 and Madhusudhana Rao D^{2*}

¹Research Scholar, Department of Mathematics, K.L. University, Vaddeswaram, Guntur (Dt), Andhra Pradesh, India ²Associate Professor, Department of Mathematics, VSR & NVR college, Tenali, Guntut (Dt), Andhra Pradesh, India

***Corresponding author:** Madhusudhana Rao D, Associate Professor, Department of Mathematics, VSR & NVR college, Tenali, Guntut (Dt), Andhra Pradesh, India, Tel: 9440358718; E-mail: <u>dmrmaths@gmail.com</u>

Received: October 25, 2017; Accepted: November 20, 2017; Published: November 23, 2017

Abstract

The terms, 'I-dominant', 'left I-divisor', 'right I-divisor', 'I-divisor' elements, 'M (I)-ternary Γ -semigroup' for a ternary Γ -ideal I of a ternary Γ -semigroup are introduced and we characterized M (I)-ternary gamma semigroups.

Keywords: Completely prime ternary F-ideal; I-dominant element; I-dominant ternary F-ideal; I-divisor; M (I)-ternary F-semigroup

Introduction

In [1] introduced the concepts of A-potent elements, A-divisor elements and N (A)-semigroups for a given ideal A in a semigroup and characterized N (A)-semigroups for a pseudo symmetric ideal A. He proved that if M is a maximal ideal containing a pseudo symmetric ideal A, then either M contains all A-dominant elements or M is trivial. In this paper we extent these notions and results to M (I)-ternary Γ -semigroups.

Experimental

Preliminaries

Definition 2.1: Let T and Γ be two non-empty set. Then T is said to be a Ternary Γ -semigroup if there exist a mapping from $T \times \Gamma \times T \times \Gamma \times T$ to T which maps $(x_1, \alpha, x_2, \beta, x_3) \rightarrow [x_1 \alpha x_2 \beta x_3]$ satisfying the condition: $[[x_1 \alpha x_2 \beta x_3] \gamma x_4 \delta x_5] = [x_1 \alpha [x_2 \beta x_3 \gamma x_4] \delta x_5] = [x_1 \alpha x_2 \beta [x_3 \gamma x_4 \delta x_5]]$ $\forall x_i \in T$, $1 \le i \le 5$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. A nonempty subset A of a ternary Γ -semigroup T is said to be ternary Γ -ideal of T if b, c, ϵ T, $\alpha, \beta \in \Gamma, a \in A$ implies $b\alpha c\beta a \in A, b\alpha a\beta c \in A, a\alpha b\beta c \in A$. A is said to be a completely prime Γ -ideal of T provided $x, y, z \in T$ and $x \Gamma \gamma \Gamma z \subseteq A$ implies either $x \in A$ or $y \in A$ or $z \in A$. and A is said to be a *prime* Γ -*ideal* of T provided X, Y, Z are Ternary Γ -ideals of T and $X\Gamma Y\Gamma Z \subseteq A \Rightarrow X \subseteq A$ or $Y \subseteq A$ or $Z \subseteq A$. A ternary Γ -ideal A of a ternary Γ -semigroup T is said to be a completely semiprime Γ -ideal provided $x \in T$, $(x\Gamma)^{n-1}x \subseteq A$ for some odd natural number n>1 implies $x \in A$. Similarly, A ternary Γ -ideal A of a ternary Γ -semigroup T is said to be semiprime ternary Γ -ideal provided X is a ternary Γ ideal of T and $(X\Gamma)^{n-1}X \subseteq A$ for some odd natural number n implies $X \subseteq A$ [2-6].

Definition 2.2: A ternary Γ -ideal I of a ternary Γ -semigroup T is said to be pseudo symmetric provided x, y, $z \in T$, $x\Gamma y\Gamma z \subseteq I$ implies $x\Gamma s\Gamma y\Gamma t\Gamma z \subseteq I$ for all s, $t \in T$ and I is said to be semi pseudo symmetric provided for any odd natural number n, $x \in T$, $(x\Gamma)^{n-1} x \subseteq I \Rightarrow (\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq I$.

Theorem 2.3: Let I be a semi-pseudo symmetric ternary Γ -ideal of a ternary Γ -semigroup T. Then the following are equivalent.

1) I₁=The intersection of all completely prime ternary Γ -ideals of T containing I.

2) I_1^1 =The intersection of all minimal completely prime ternary Γ -ideals of T containing I.

3) I_1^{11} = The minimal completely semiprime ternary Γ -ideal of T relative to containing I.

4) I₂={ $x \in T$: $(x\Gamma)^{n-1}x \subseteq I$ for some odd natural number n}

5) I₃=The intersection of all prime ternary Γ -ideals of T containing I.

6) I_3^1 =The intersection of all minimal prime ternary Γ -ideals of T containing I.

7) I_3^{11} = The minimal semiprime ternary Γ -ideal of T relative to containing I.

8) I₄={ $x \in T: (\langle x \rangle \Gamma)^{n-l} \langle x \rangle \subseteq I$ for some odd natural number n}.

Theorem 2.4: If I is a ternary Γ -ideal of a semi simple ternary Γ -semigroup T, then the following are equivalent.

1) I is completely semiprime.

2) I is pseudo symmetric.

3) I is semi-pseudo symmetric.

Results and Discussion

M (i)-ternary gamma-semigroup

We now introduce the terms I-dominant element and I-dominant ternary Γ -ideal for a ternary Γ -ideal of a ternary Γ -semigroup [7].

Definition 3.1: Let I be a ternary Γ -ideal in a Ternary Γ -semigroup T. An element $x \in T$ is said to be I-dominant provided there exists an odd natural number *n* such that $(x\Gamma)^{n-1}x \subseteq I$. A ternary Γ -ideal J of T is said to be I-dominant ternary Γ -ideal provided there exists an odd natural number *n* such that $(J\Gamma)^{n-1}J \subseteq I$.

Note 3.2: If I is a ternary Γ -ideal of a ternary Γ -semigroup T, then every element of I is a I-dominant element of T and I itself an I-dominant ternary Γ -ideal of T.

Definition 3.3: Let I be a ternary Γ -ideal of a ternary Γ -semigroup T. An I-dominant element *x* is said to be a nontrivial I-dominant element of T if $x \notin I$.

Notation 3.4: M_o (I)=The set of all I-dominant elements in T. M₁ (I)=The largest ternary Γ -ideal contained in M_o (I). M₂ (I)=The union of all I-dominant ternary Γ -ideals.

Theorem 3.5: If I is a ternary Γ -ideal of a ternary Γ -semigroup T, then $I \subseteq M_2(I) \subseteq M_1(I) \subseteq M_0(I)$.

Proof: Since I is itself an I-dominant ternary Γ -ideal, and M_2 (I) is the union of all I-dominant ternary Γ -ideals. Therefore, I $\subseteq M_2$ (I). Let $x \in M_2$ (I) $\Rightarrow x$ belongs to at least one I-dominant ternary Γ -ideals $\Rightarrow x$ is an I-dominant element. Hence, $x \in M_0$ (I). Therefore, M_2 (I) $\subseteq M_0$ (I). Clearly M_2 (I) is a ternary Γ -ideal of T. Since M_1 (I) is the largest ternary Γ -ideal contained in M_0 (I), we have $M_2(I) \subseteq M_1(I) \subseteq M_0(I)$. Hence, $I \subseteq M_2(I) \subseteq M_1(I) \subseteq M_0(I)$.

Theorem 3.6: If I is a ternary Γ -ideal in a ternary Γ -semigroup T, then the following are true.

- 1. $M_0(I)=I_2$.
- 2. M_1 (I) is a semiprime ternary Γ -ideal of T containing I.
- 3. M₂ (I)=I₄.

Proof: (1) M_o (I)=The set of all I-dominant elements={ $x \in T$: $(x\Gamma)^{n-1}x \subseteq I$ for some odd natural number n}=I₂.

(2) Suppose that $(\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq M_1$ (I) for some odd natural number *n*. Suppose, if possible $x \notin M_1$ (I). M_1 (I), $\langle x \rangle$ are the ternary Γ -ideals implies M_1 (I) $\cup \langle x \rangle$ is a ternary Γ -ideal. Since M_1 (I) is the largest ternary Γ -ideal in M_0 (I), We have M_1 (I) $\cup \langle x \rangle \not\subset M_0$ (I) $\Rightarrow \langle x \rangle \not\subset M_0$ (I). Hence, there exists an element *y* such that $y \in \langle x \rangle N_0$ (I). Now $(y\Gamma)^2 y \subseteq (\langle x \rangle \Gamma)^2 \langle x \rangle \subseteq M_1(I) \subseteq M_0(I) \Rightarrow (y\Gamma)^2 y \subseteq M_0(I) \Rightarrow (y\Gamma)^2 y\Gamma)^{n-1}(y\Gamma)^2 y \subseteq I$ for some odd natural number $n \Rightarrow ((y\Gamma)^2 y\Gamma)^{n-1}(y\Gamma)^2 y \subseteq I \Rightarrow y \in M_0(I)$. It is a contradiction. Therefore, $x \in M_1$ (I). Hence, M_1 (I) is a semiprime ternary Γ -ideal of T containing I.

(3) Let $x \in M_2$ (I). Then there exists an I-dominant ternary Γ -ideal J such that $x \in J$.

J is I-dominant ternary Γ -ideal implies there exists an odd natural number n such that $(J\Gamma)^{n-1}J \subseteq I \Longrightarrow (\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq (J\Gamma)^{n-1}J \subseteq I$ for some odd $n \in \mathbb{N} \Longrightarrow x \in I_4$. Therefore, $M_2(I) \subseteq I_4$. Let $x \in I_4$

 $x \in I_4 \Longrightarrow (\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq I$ for some odd $n \in \mathbb{N}$. So $\langle x \rangle$ is an I-dominant ternary Γ -ideal in T and hence, $\langle x \rangle \subseteq M_2$ (I) $\Longrightarrow x \in M_2$ (I). Therefore, $I_4 \subseteq M_2$ (I). Hence, M_2 (I)=I₄. It is natural to ask whether M_1 (I)=I₃. This is not true.

Example 3.7: In the free ternary Γ -semigroup T over the alphabet *x*, *y*, *z*. For the ternary Γ -ideal I=T $\Gamma x \Gamma x \Gamma x \Gamma x \Gamma T$, M₀ (I)={*x*} \cup T¹ $\Gamma x \Gamma x \Gamma x \Gamma T^1$ and M₁ (I)={*x* $\Gamma x \Gamma x \Gamma x \Gamma x \Gamma T^- T^1 \Gamma x \Gamma x \Gamma x \Gamma T^1$. But T $\Gamma x \Gamma x \Gamma x \Gamma x \Gamma T$ is a prime ternary Γ -ideal, let I, J, K are three ternary Γ -ideals of T such that IFJ $\Gamma K \subseteq T\Gamma x \Gamma x \Gamma x \Gamma T$, implies all words containing $x\Gamma x\Gamma x \subseteq I$ or all words containing $x\Gamma x\Gamma x \subseteq J$ or all words containing $x\Gamma x\Gamma x \subseteq K \Rightarrow I \subseteq T\Gamma x\Gamma x\Gamma x\Gamma x\Gamma$ or $J \subseteq T\Gamma x\Gamma x\Gamma x\Gamma x\Gamma T$ or $K \subseteq T\Gamma x\Gamma x\Gamma x\Gamma x\Gamma T$. Therefore, $T\Gamma x\Gamma x\Gamma x\Gamma T$ is a prime ternary Γ -ideal. We have I₃=T $\Gamma x\Gamma x\Gamma x\Gamma T$, so M₁ (I) \neq I₃. Therefore, we can remark that the inclusions in I₃ \subseteq M₁ (I) \subseteq M₀ (I)=I₂ may be proper in an arbitrary ternary Γ -semigroup [8-11].

Theorem 3.8: If I is a semi pseudo symmetric ternary Γ -ideal in a ternary Γ -semigroup T, then M₀ (I)=M₁ (I)=M₂ (I). **Proof:** Suppose I is a semi pseudo symmetric ternary Γ -ideal in a ternary Γ -semigroup T. By theorem 3.7, M₀ (I)=I₂ and M₂ (I)=I₄. Also by theorem 2.10, we have I₂=I₄. Hence, M₀ (I)=M₂ (I). By the theorem 3.5, $I \subseteq M_2(I) \subseteq M_1(I) \subseteq M_0(I)$. We have M₂ (I) \subseteq M₁ (I). Now let $x \in M_1(I) \Rightarrow x \in M_0(I) \Rightarrow x \in M_2(I)$. Therefore, M₁ (I) \subseteq M₂ (I). Hence, M₁ (I)=M₂ (I). Therefore, M₀ (I)=M₁ (I)=M₂ (I).

Theorem 3.9: For any semi pseudo symmetric ternary Γ -ideal I in a ternary Γ -semigroup T, a nontrivial I-dominant element x (x \notin I) cannot be semi simple [12,13].

Proof: Since x is a nontrivial I-dominant element, there exists an odd natural number n such that $(x\Gamma)^{n-1}x \subseteq I$. Since I is semi pseudo symmetric ternary Γ -ideal, we have $(\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq I$. If x is semi simple, then

 $< x >= (< x > \Gamma)^2 < x >$ and hence, $< x >= (< x > \Gamma)^{n-1} < x > \subseteq I$, this is a contradiction. Thus, x is not semi-simple.

Theorem 3.10: If I is a ternary Γ -ideal in a ternary Γ -semigroup T, such that M₀ (I)=I, then I is a completely semiprime ternary Γ -ideal and I is a pseudo symmetric ternary Γ -ideal.

Proof: Let $x \in T$ and $(x\Gamma)^2 x \subseteq I$. Since $M_0(I)=I$, $(x\Gamma)^2 x \subseteq M_0(I)$. Thus, there exists an odd natural number n such that $((x\Gamma)^3)^{n-1}(x\Gamma)^2 x \subseteq I \Longrightarrow x \in M_0(I) = I$. Therefore, I is a completely semiprime ternary Γ -ideal. By corollary 2.11, A is pseudo symmetric ternary Γ -ideal. Hence, I is completely semiprime and pseudo symmetric ternary Γ -ideal.

Theorem 3.11: If I is a semi pseudo symmetric ternary Γ -ideal of a ternary semi simple Γ -semigroup then I=M₀ (I).

Proof: Clearly, $I \subseteq M_0$ (I). Let $x \in M_0$ (I). If $x \notin I$ then x is a nontrivial I-dominant element. By theorem 3.9, x cannot be semi simple. It is a contradiction. Therefore, $x \in I$ and hence, M_0 (I) $\subseteq I$. Thus M_0 (I)=I.

We now introduce a left I-divisor element, lateral I-divisor element, right, I-divisor element and I-divisor element corresponding to a ternary Γ -ideal A in a ternary Γ -semigroup.

Definition 3.12: Let I be a ternary Γ -ideal in a ternary Γ -semigroup T. An element $x \in T$ is said to be a left I-divisor (a lateral I-divisor, right I-divisor) provided there exist two elements $y, z \in T \setminus I$ such that $x \Gamma y \Gamma z \subseteq I$ ($y \Gamma x \Gamma z \subseteq I, y \Gamma z \Gamma x \subseteq I$).

Definition 3.13: Let I be a ternary Γ -ideal in a ternary Γ -semigroup T. An element $x \in T$ is said to be two-sided A-divisor if x is both a left I-divisor and a right, I-divisor element.

Definition 3.14: Let I be a ternary Γ -ideal in a ternary Γ -semigroup T. An element $x \in T$ is said to be I-divisor if *a* is a left I-divisor, a lateral I-divisor and a right, I-divisor element.

We now introduce a left I-divisor ternary Γ -ideal, lateral I-divisor ternary Γ -ideal, right I-divisor ternary Γ -ideal and I-divisor ternary Γ -ideal corresponding to a ternary Γ -ideal I in a ternary Γ -semigroup.

Definition 3.15: Let I be a ternary Γ -ideal in a ternary Γ -semigroup T. A ternary Γ -ideal J in T is said to be a left I-divisor ternary Γ -ideal (lateral I-divisor ternary Γ -ideal, right I-divisor ternary Γ -ideal, two sided I-divisor ternary Γ -ideal) provided every element of J is a left I-divisor element (a lateral I-divisor element, a right I-divisor element, it is both a left I-divisor ternary Γ -ideal and a right I-divisor ternary Γ -ideal).

Definition 3.16: Let I be a ternary Γ -ideal in a ternary Γ -semigroup T. A ternary Γ -ideal J in T is said to be I-divisor ternary Γ -ideal provided if it is a left I-divisor ternary Γ -ideal, a lateral I-divisor ternary Γ -ideal and a right I-divisor ternary Γ -ideal of a ternary Γ -semigroup T.

Notation 3.17: R_l (I)=The union of all left I-divisor ternary Γ -ideals in T. R_r (I)=The union of all right I-divisor ternary Γ -ideals in T. R_m (I)=The union of all lateral I-divisor ternary Γ -ideals in T. R (I)= R_l (I) $\cap R_m$ (I) $\cap R_r$ (I). We call R (I), the divisor radical of T.

Theorem 3.18: If I is any ternary Γ -ideal of a ternary Γ -semigroup T, then M₁ (I) \subseteq R (I).

Proof: Let $x \in M_1$ (I). Since M_1 (I) $\subseteq M_0$ (I), we have $x \in M_0(I) \Longrightarrow (x\Gamma)^{n-1} x \subseteq I$ I for some odd natural number *n*. Let *n*

be the least odd natural number such that $(x\Gamma)^{n-1}x \subseteq I$. If n=1 then $x \in I$ and hence, $x \in \mathbb{R}$ (I).

If n > 1, then $(x\Gamma)^{n-1}x = (x\Gamma)^{n-4}x\Gamma x\Gamma x \subseteq I$, where $(x\Gamma)^{n-4}x \subseteq T/I$.

Hence, *x* is an I-divisor element. Thus, $x \in \mathbb{R}$ (I). Therefore, M_1 (I) $\subseteq \mathbb{R}$ (I).

Theorem 3.19: If I is a ternary Γ -ideal in a ternary Γ -semigroup T, then R (I) is the union of all I-divisor ternary Γ -ideals in T.

Proof: Suppose I is a ternary Γ -ideal in a ternary Γ -semigroup T.

Let J be I-divisor ternary Γ -ideal in T. Then J is a left I-divisor, a lateral I-divisor and a right I-divisor ternary Γ -ideal in T. Thus $J \subseteq R_l$ (I), $J \subseteq R_m$ (I) and $J \subseteq R_r$ (I)

 $\Rightarrow I \subseteq R_{l}(I) \cap R_{m}(I) \cap R_{r}(I) = R(I) \Rightarrow B \subseteq R(I).$

Therefore, R (I) contains the union of all I-divisor ternary Γ -ideals in T. Let $x \in R$ (I). Then $x \in R_l$ (I) $\cap R_m$ (I) $\cap R_r$ (I). So $\langle x \rangle \subseteq R_l$ (I) $\cap R_m$ (I) $\cap R_r$ (I).

Hence, $\langle x \rangle$ is I-divisor ternary Γ -ideal. So, R (I) is contained in the union of all divisor ternary Γ -ideals in T. Thus R (I) is the union of all divisor ternary Γ -ideals of T.

Corollary 3.20: If I is a pseudo symmetric ternary Γ -ideal in a ternary Γ -semigroup T, then R (I) is the set of all I-divisor elements in T.

Proof: Suppose I is a pseudo symmetric ternary Γ -ideal in T. Let x be I-divisor element in T. Then $x\Gamma y\Gamma z \subseteq I$, where y, z

 \in T\I. $x \Gamma y \Gamma z \subseteq I$, I is pseudo symmetric

 $\Rightarrow \langle x \rangle \Gamma \langle y \rangle \Gamma \langle z \rangle \subseteq I \Rightarrow \langle x \rangle$ is I-divisor ternary Γ -ideal $\Rightarrow \langle x \rangle \subseteq R$ (I)

 $\Rightarrow x \in \mathbb{R}$ (I). Hence, \mathbb{R} (I) is the set of all I-divisor elements in T. We now introduce the notion of M (I)-ternary Γ -semigroup.

Definition 3.21: Let I be a ternary Γ -ideal in a ternary Γ -semigroup T. T is said to be a M (I)-ternary Γ -semigroup provided every I-divisor is I-dominant.

Notation 3.22: Let T be a ternary Γ -semigroup with zero. If I={0}, then we write R for R (I) and M for M₀ (I) and M-ternary Γ -semigroup for M (I)-ternary Γ -semigroup.

Theorem 3.23: If T is an M (I)-ternary Γ -semigroup, then R (I)=M₁ (I).

Proof: Suppose T is an M (I)-ternary Γ -semigroup. By theorem 3.18, M₁ (I) \subseteq R (I). Let $x \in$ R (I) $\Rightarrow x$ is an I-divisor $\Rightarrow x$ is an I-dominant $\Rightarrow x \in$ M₁ (I). \therefore R (I) \subseteq M₁ (I). Hence, M₁ (I)=R (I).

Theorem 3.24: Let I be a semipseudo symmetric ternary Γ -ideal in a ternary Γ -semigroup T. Then T is an M (I)-ternary Γ -semigroup iff R (I)=M₀ (I).

Proof: Since I is a semi-pseudo symmetric ternary Γ -ideal, by theorem 3.8, M_0 (I)= M_1 (I)= M_2 (I). If Tan M (I)-ternary Γ -semigroup, then by theorem 3.23, R (I)= M_1 (I). Hence, R (I)= N_0 (I). Conversely suppose that R (I)= M_0 (I). Then clearly every I-divisor element is an I-dominant element. Hence, T is an M (I)-ternary Γ -semigroup.

Corollary 3.25: Let I be a pseudo symmetric ternary Γ -ideal in a ternary Γ -semigroup T. Then T is an M (I)-ternary Γ -semigroup if and only if R (I)=M₀ (I).

Proof: Since every pseudo symmetric ternary Γ -ideal is a semi-pseudo symmetric ternary Γ -ideal, by theorem 3.24, R (I)=M₀ (I).

Corollary 3.26: Let T be a ternary Γ -semigroup with 0 and < 0 > is a pseudo symmetric ternary Γ -ideal. Then R=M iff T is an M-ternary Γ -semigroup.

Proof: The proof follows from the theorem 3.24.

Theorem 3.27: If N is a maximal ternary Γ -ideal in a ternary Γ -semigroup T containing a pseudo symmetric ternary Γ -ideal I, then N contains all I-dominant elements in T or T\N is singleton which is I-dominant.

Proof: Suppose N does not contain all I-dominant elements.

Let $x \in T \setminus N$ be any I-dominant element and y be any element in $T \setminus N$.

Since N is a maximal ternary Γ -ideal, N $\cup \langle x \rangle =$ N $\cup \langle y \rangle \Rightarrow \langle x \rangle = \langle y \rangle$.

Since $y \notin N$, we have $y \in \langle x \rangle$. Let *n* be the least positive odd integer such that $(x\Gamma)^{n-1}x \subseteq I$. Since I is a pseudo symmetric ternary Γ -ideal and hence, $(\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq I$.

Therefore $(y\Gamma)^{n-1}y \subseteq I$ and hence, y is I-dominant element. Thus, every element in T\N is I-dominant.

Similarly, we can show that if *m* is the least positive odd integer such that $(y\Gamma)^{m-1} y \subseteq I$, then $(x\Gamma)^{m-1} x \subseteq I$. Therefore, there exists an odd natural number *p* such that $(x\Gamma)^{p-1} x \subset I$ and $(x\Gamma)^{p-3} x \acute{U} I$ for all $x \in T \setminus N$.

Let $x, y, z \in T \setminus N$. Since N is maximal ternary Γ -ideal, we have $\langle x \rangle = \langle z \rangle$. So $y, z \in \langle x \rangle \Rightarrow y \in s\Gamma x\Gamma t, z \in u\Gamma x\Gamma v$. So $x \in \langle y \rangle$ and hence, $x \in s\Gamma y\Gamma t$ for some $s, t \in T^1$. Now since I is a pseudo symmetric ternary Γ -ideal, we have, $(x\Gamma y\Gamma z\Gamma)^{p-3} = (x\Gamma y\Gamma z\Gamma)^{p-4} x\Gamma y\Gamma z = (x\Gamma y\Gamma z\Gamma)^{p-4} x\Gamma (s\Gamma x\Gamma t) \Gamma (u\Gamma x\Gamma v) \subseteq I \Rightarrow x\Gamma y\Gamma z \subseteq N$. If $y \neq x$ then $s, t \in T$. If $s, t \in N$ then $s\Gamma x\Gamma t \subseteq N \Rightarrow y \in N$.

Which is not true. In both the cases we have a contradiction. Hence, x=y. Similarly, we show that z=x.

Corollary 3.28: If N is a nontrivial maximal ternary Γ -ideal in a ternary Γ -semigroup T containing *a* pseudo symmetric ternary Γ -ideal I. Then M₀ (I) \subseteq N.

Proof: Suppose in M_0 (I) $\not\subseteq N$. Then by above theorem 3.27, N is trivial ternary Γ -ideal. It is a contradiction. Therefore, M_0 (I) $\subseteq N$.

Corollary 3.29: If N is a maximal ternary Γ -ideal in a semi simple ternary Γ -semigroup T containing *a* semipseudo symmetric ternary Γ -ideal I. Then M₀ (I) \subseteq N.

Proof: By theorem 3.11, I is pseudo symmetric ternary Γ -ideal. If $x \in T \setminus N$ is I-dominant, then *x* cannot be semi-simple. It is a contradiction. Therefore, M_0 (I) $\subseteq N$.

Conclusion

According to theorem 3.11, I is pseudo symmetric ternary Γ -ideal. If $x \in T \setminus N$ is I-dominant, then x cannot be semi simple. Hence, is a contradiction. Therefore, M_0 (I) $\subseteq N$.

REFERENCES

- 1. Anjaneyulu A. Stucture and ideals theory of semigroups. Thesis, ANU. 1980.
- Madhusudhana Rao D, Anjaneyulu A, Gangadhara Rao A. Pseudo symmetric Γ-Ideals in Γ-semigroups. Int J Math Eng. 2011;116:1074-81.
- Madhusudhana Rao D, Anjaneyulu A, Gangadhara Rao A. Prime Γ-radicals in Γ-semigroups. Int J Math Eng. 2011;116:1074-81.
- Madhusudhana Rao D, Anjaneyulu A, Gangadhara Rao A. N (A)-Γ-semigroups. Ind J Math Mathemat Sci. 2011;7(2):75-83.
- 5. Madhusudhana Rao D. Primary ideals in quasi-commutative ternary semigroups. Int J Pure Alg. 2011;3(7):254-8.
- 6. Madhusudhana Rao D, Srinivasa Rao G. A Study on ternary semirings. Int J Mathemat Arch. 2014;5(12):24-30.
- 7. Madhusudhana Rao D, Srinivasa Rao G. Special elements of a ternary semiring. Int J Eng Res and App. 2014;4(11):123-30.
- Madhusudhana Rao D, Srinivasa Rao G. Concepts on ternary semirings. International Journal of Modern Science and Engineering Technology (IJMSET). 2014;1(7):105-10.
- Madhusudhana Rao D, Vasantha M, Venkateswara Rao M. Structure and study of elements in ternary Γ-semigroups. Int J Eng Res. 2014;4(4):197-202.
- 10. Madhusudhana Rao D. N (A)-ternary semigroups. African J Math and Comp Sci Res. 2013;6(7):149-55.
- Subramanyeswarao VB, Anjaneyulu A, Madhusudhana Rao D. Partially ordered Γ-semigroups. Int J Eng Res Technol. 2012;1(6):1-11.
- 12. Sarala Y, Anjaneyulu A, Madhusudhana Rao D. Ternary semigroups. Int J Mathemat Sci Technol and Human. 2013;76:848-59.
- 13. Vasantha M, Madhusudhana Rao D. Properties of prime ternary-radicals in ternary-semigroups. Global Journal of Pure and Applied Mathematics. 2015;1(6):4255-71.