ISSN : 0974 - 7486

Volume 10 Issue 7

Materials

Science An Indian Journal FUII Paper

MSAIJ, 10(7), 2014 [269-276]

Structural, thermal and optical properties of Ag(In_{1-x}Ga_x)₅Te₈

Larissa T.Durán¹, Josefa Estévez Medina¹, Jaime A.Castro¹, José R.Fermín², Ricardo J.Morales¹, Carlos A.Durante Rincón^{1*} ¹Laboratorio de Ciencia de Materiales, Departamento de Física, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, 4005, (VENEZUELA) ²Laboratorio de Materia Condensada, Departamento de Física, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, 4005, (VENEZUELA) ²Laboratorio de Materia Condensada, Departamento de Física, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, 4005, (VENEZUELA) E-mail : durin@cantv.net; cdurante@luz.edu.ve

ABSTRACT

Ingots of the Ag(In_{1-x}Ga_x)₅Te₈ (0≤x≤1) system were prepared by direct fusion of the stoichiometric mixture of the elements in evacuated quartz ampoules. The analysis of the X-ray powder diffraction data showed the presence of a single phase with tetragonal structure at room temperature for all the studied compositions. The lattice parameters *a* and *c* were calculated. Melting temperatures, from 696 °C for AgIn₅Te₈ to 775 °C for AgGa₅Te₈, were obtained from Differential Thermal Analysis measurements performed on samples in evacuated quartz ampoules. Reflectance measurements were used to calculate the band gap energies and the real refraction indices. A direct band gap, slightly varying from 1.34 to 1.39 eV (0≤x≤0.4), was found in In-rich compounds, while an indirect band gap was found in all the studied compositions varying from 1.11 to 1.14 eV (0≤x≤1). © 2014 Trade Science Inc. - INDIA

INTRODUCTION

The measurements on silver-based materials, having a large concentration of silver (at about 24%), show that these compounds are highly sensitive to optical and thermal stress and hence could be useful for device applications^[1,2]. The ternary silver chalcogenides of the type Ag-In-VI (VI=S, Se, Te) are interesting materials because of their potential application in non-linear optics and solar cells. It has been found that they form very stable stoichiometric compounds with electrophysical properties independent of impurities^[3-5].

Information about the Ag_2 Te- Ga_2 Te₃ phase diagram has been reported by few authors. Guittard et al^[6] and

Krämer^[7] have reported the existence of AgGa₅Te₈ and other solid solutions in the vicinity of Ga₂Te₃. Julien et al^[8] reported a description of the Ag₂Te-Ga₂Te₃ quasibinary phase diagram and the role of oxygen in the creation of AgGaTe₂ and AgGa₅Te₈. They also reported on the electrical and optical properties of AgGaTe₂ and AgGa₅Te₈ single crystals. On the other hand, the Ag₂Te-In₂Te₃ phase diagram has been also described by few authors^[9-11], showing the existence of different intermediate phases in the In-rich side of this pseudo binary system, but only AgInTe₂, Ag₃In₉₇Te₁₄₇ and AgIn₅Te₈ have been confirmed by more than one author. Sánchez et al^[1] and Mora et al^[3] have reported on the structural, optical and electrical properties of AgIn₅Te₈. Concern-

KEYWORDS

Semiconductors; Powder diffraction; Differential thermal analysis (DTA); Optical properties; Reflectance.

Full Paper

ing to the variation of the properties of the polycrystalline $Ag(In_{1-x}Ga_x)_5Te_8$ ($0 \le x \le 1$) system no report has been published to date. The aim of this work is to examine some of the physical properties of this system, including the reflectance, by performing all the measurements on samples from the same ingot for each studied composition.

CRYSTAL GROWTHAND EXPERIMENTAL DETAILS

Ingots of the Ag($In_{1-x}Ga_x$)₅Te₈ system at compositions x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 were prepared exclusively for this work by direct fusion of the stoichiometric mixture of the elements of at least 5N purity in evacuated quartz ampoules ($\cong 10^{-6}$ Torr). The ampoules were heated in a vertical furnace. To minimize the risk of explosion due to exothermic reaction between group III elements and Te, the ampoules were heated very slowly at 5°C/h up to 1050 °C, kept at this temperature for 24 h were rocked manually at regular intervals to achieve a homogeneous mixing of the liquid phase of the reacting mixture and then were cooled to 600 °C at a rate of 5°C/h. Finally, they were cooled, at a rate of 30°C/h, to 500 °C where they were annealed for 4 days to reduce possible defects and to increase grain size. As observed by a simple thermal probe test, samples cut from the ingots showed p-type conductivity, except x=0.2 that showed n-type conductivity which could be due to a stoichiometric deviation. X-ray powder diffraction measurements were carried out using a Siemens D5005 diffractometer with copper anode $(\lambda = 1.54060 \text{ Å}, \alpha_2/\alpha_1 = 0.5)$ and Bragg-Brentano geometry. All the patterns were obtained for $5^{\circ} \le 2\theta \le 100^{\circ}$ with a step size of 0.02° and a step time of 40.0s. The intensity and 2θ position of each reflection were determined using the Winplotr graphic interface. The indexation was made using the Treor90 program and the unit cell parameters were refined with the NBS program. A Differential Thermal Analysis apparatus, Shimadzu DTA-50, was used to determine the melting and the possible solid-solid transition temperatures. The equipment was previously calibrated with metals (Sn, Pb, Zn, Al, Ag and Au) in evacuated quartz ampoules to reproduce the running conditions of the studied samples, obtaining a maximum error of ±6°C which can be con-

Materials Science An Indian Journal

sidered a small error taking into account the presence of the bottom of the quartz ampoules between the sample and the thermocouple. The samples in the form of powder and weighing 80-90 mg were sealed in evacuated quartz ampoules. α -Al₂O₂ powder (80-90) mg) was used as inert reference material. Several heating and cooling rates were used and the melting and solid-solid transition temperatures were obtained from the extrapolation of the onset temperatures of DTA peaks to zero heating and cooling rates^[12]. Onset temperatures were read from the maximum (cooling) or minimum (heating) peaks of the DTA signal first derivative. Transmittance and reflectance measurements were carried out at room temperature using a fiber-optics spectrophotometer Ocean Optics SD 2000. An integrating sphere was used for the reflectance measurements. For transmittance measurements, the samples were thinned down to a thickness of 100 µm and then polished to optical quality to about 50 µm with slurries of alumina powder of decreasing grid sizes (down to 0.3 µm) in deionized water. It was not possible to obtain thinner samples without breaking them. For reflectance measurements, rectangular pieces with surfaces of 10 mm² were thinned down to a thickness of 1 mm and polished to optical quality.

RESULTS AND DISCUSSION

The diffraction patterns of the $Ag(In_{1-x}Ga_x)_5Te_8$ compounds for different values of *x* are shown in Figure 1; only the most intense reflections are marked. From the analysis, it is observed that a single phase with tetragonal structure occurs across the whole composition range. The refined values of the unit lattice parameters *a* and *c* are shown in TABLE 1.

The values of the unit-cell parameters *a* and *c* obtained for the tetragonal structure of AgIn₅Te₈, 6.2125 Å and 12.456 Å, respectively, are in very good agreement with those reported by Mora et al^[3] and Charoenphakdee et al^[13]. The unit-cell parameters obtained for the tetragonal structure of AgGa₅Te₈ are a=5.961 Å and c=12.688 Å. Guittard et al^[6] reported an orthorhombic structure for AgGa₅Te₈ with the values a=6.00 Å, b=12.02 Å and c=24.38 Å.

Charoenphakdee et al^[13] also reported an orthorhombic structure for $AgGa_5Te_8$ with similar values for

Full Paper

Figure 1 : X-ray powder diffraction patterns of $Ag(In_{1-x}Ga_x)_5 Te_8$ compounds. Most intense reflections are shown with their respective Miller indices.

the lattice parameters. It can be noticed that half b and c lead to the values of the tetragonal structure obtained in this work. The parameters a and c are plotted as a function of the composition x in Figure 2.

It is found that parameter a follows the Vegard's linear rule; however, parameter c does not obey that rule. Substituting In atoms for smaller Ga atoms flatters the unit cell and reduces the lattice parameters until

Figure 2 : Variation of lattice parameters *a* (full circles) and *c* (open circle) with composition for $Ag(In_{1-x}Ga_x)_5Te_8$ compounds. The solid straight line represents the linear fit of parameter *a*.

coulombian repulsion between cations makes parameter c increases again and the tetragonal thiogallate structure transits to tetragonal scheelite structure. This is estimated at x=0.73, as can be seen from the plot of the unit-cell volume vs. composition shown in Figure 3, where two linear regions are present.

DTA pattern of $AgIn_2Ga_3Te_8$ is shown in Figure 4 as an example of the DTA patterns obtained for all the

Compound	<i>a</i> (Å)	b (Å)	c (Å)	c/a	$V(\text{\AA}^3)$	Structure
AgIn ₅ Te ₈	6.2125	6.2125	12.456	2.0049	480.7	Tetragonal/thiogallate
	6.1952[3]	6.1952[3]	12.419[3]	2.0046	476.7[3]	Tetragonal[3]
	-	-	-	-	-	Tetragonal/thiogallate[9]
	6.204 [13]	6.204[13]	12.423[13]	2.0024	478.2	Tetragonal[13]
AgIn ₄ GaTe ₈	6.1503	6.1503	12.329	2.0046	466.4	Tetragonal/thiogallate
AgIn ₃ Ga ₂ Te ₈	6.1130	6.1130	12.174	1.9914	454.9	Tetragonal/thiogallate
AgIn ₂ Ga ₃ Te ₈	6.0423	6.0423	11.925	1.9736	435.4	Tetragonal/thiogallate
AgInGa ₄ Te ₈	6.0117	6.0117	12.005	1.9970	433.9	Tetragonal/scheelite
AgGa ₅ Te ₈	5.9610	5.9610	12.688	2.1284	450.8	Tetragonal/scheelite
	6.00[6]	12.02[6]	24.38[6]	-	-	Orthorhombic[6]
	8.415[8]	8.415[8]	47.877[8]	-	-	Tetragonal/scheelite[8]
	6.022[13]	12.113[13]	24.516[13]	- ,	-	Orthorhombic[13]

TABLE 1 : Unit cell lattice parameters of $Ag(In_{1,x}Ga_x)_5 Te_8$ compounds.

Materials Science An Indian Journal

Figure 3 : Unit-cell volume vs. composition for $Ag(In_{1.} Ga_x)_5 Te_8$ compounds. The interception of two linear fits V_1 =481.49-73.78x and V_2 =365.99+84.85x occurs at x=0.73.

compositions. The values of phase transition temperatures for all the studied compositions, obtained as described early in section 2, are listed in TABLE 2. Figure 5 shows extrapolation to 0 °C/min for AgGa₅Te₈.

TABLE 2 : Phase transition temperatures of $Ag(In_{1-x}Ga_x)_5Te_8$ compounds.

Compound	Heating T (°C)	Cooling T (°C)
AgGa ₅ Te ₈	775	777
AgInGa ₄ Te ₈	731	737
AgIn ₂ Ga ₃ Te ₈	722	721
AgIn ₃ Ga ₂ Te ₈	624, 701	703, 573
AgIn ₄ GaTe ₈	704	699
AgIn ₅ Te ₈	696	695

AgIn₅Te₈ melts congruently at 696 °C, a lower temperature when compared with the congruent melting at 725 °C reported by Mora et al^[3], Palatnik and Rogacheva^[9] and Bahari et al^[10]. AgGa₅Te₈ melts congruently at 775 °C. For this compound, Guittard et al^[6] reported a peritectic decomposition at 450°C and complete melting at 750°C, while Kramer et al^[7] reported melting at 780 °C. The other studied compositions melt

Figure 4 : DTA pattern of AgIn₂Ga₃Te₈ at 15°C/min. Solid line represents temperature, open triangles represent DTA signal and open circles represent DTA signal first derivative.

Figure 5: Extrapolation to zero heating or cooling rate of the onset temperatures obtained for AgGa, Te,.

Figure 6 : T(x) vertical section of $Ag(In_{1,x}Ga_x)_5 Te_8$ compounds. Full and open circles represent temperature values obtained from heating and cooling runs, respectively. The solid line shows how melting temperatures increase with composition x.

congruently, with melting temperatures increasing as x increases, as shown in Figure 6. Only AgIn₃Ga₂Te₈ shows a solid-solid transition between 573 °C and 624°C as previously reported^[14].

The signals from the transmittance measurements resulted low and noisy and then useless for any analysis. This can be expected for thick samples (>50 μ m) with high reflectivity, as is the case with the silver and tellurium-rich studied compounds^[15]. On the other hand, reflectivity measurements resulted high and clear, as can be seen from Figure 7.

The tellurium content is high in the studied compounds, varying from 63.8 %*w* for AgIn₅Te₈ to 72.5 %*w* for AgGa₅Te₈, and the measured reflectivity values around 1 eV are in good agreement with the values reported for tellurium with normal incidence (0.606 with

 $E \mid \uparrow_{C}^{\circ}$ and 0.472 with $E \perp_{C}^{\circ}$)^[15]. Several authors^[16-18]

have used reflectance measurements to estimate optical parameters of I-III-VI₂ compounds. Particularly, Diaz et al^[19] developed a method to obtain the band gap energy values of bulk materials with direct or indirect band gaps.

Figure 7 : Reflectance of $Ag(In_{1-x}Ga_x)_5 Te_8$ compounds.

 $Figure \ 8: Fitting \ of \ the \ reflectance \ for \ a) \ direct \ gap \ of \ AgIn_5 Te_8 \ using \ Eq. \ (1) \ and \ b) \ indirect \ gap \ of \ AgIn_5 Te_8 \ using \ Eq. \ (2).$

TABLE 3 : Direct energy band gap values of Ag(In	"Ga _v) ₅ Te	_s compounds.
--	------------------------------------	-------------------------

Commound	Direct Band Gap					
Compound	Fitting region	Fitting Range (eV ⁻¹)	n	E _g (eV)		
AgIn ₃ Ga ₂ Te ₈	R↓ 1/hv↑ R ² =0.95503 Chi ² =2.3125E-6	$\begin{array}{c} 0.5758 - 0.6447 \\ A_0 = 0.40548 \pm 0.04762 \\ A_1^{\circ} = 1.03272 \pm 0.38392 \\ A_2^{\circ} = 1.43609 \pm 0.41904 \end{array}$	3.98-5.12	1.39		
AgIn ₄ GaTe ₈	$R \downarrow 1/hv \uparrow$ $R^2=0.94809$ $Chi^2=2.2558E-6$	$\begin{array}{c} 0.5325 - 0.5766 \\ A_0 = 0.28105 \pm 0.11868 \\ A_1^{'} = 3.17792 \pm 1.15839 \\ A_2^{'} = 4.3494 \pm 1.39206 \end{array}$	2.35-4.44	1.37		
AgIn ₅ Te ₈	$R \downarrow 1/hv \uparrow$ $R^2=0.96352$ $Chi^2=2.2905E-6$	$\begin{array}{c} 0.5882 - 0.6428 \\ A_0 = 0.33835 \pm 0.08528 \\ A_1^{'} = 1.61235 \pm 0.67539 \\ A_2^{'} = 2.16737 \pm 0.73098 \end{array}$	3.02-4.73	1.34 1.28[1]		

Materials Science Au Indian Journal

275

Compound	Indirect Band Gap					
Compound	Fitting region	Fitting Range (eV)	n	E _g (eV)		
	$R\uparrow hv\uparrow$	1.5250 -1.6295				
AgGa ₅ Te ₈	$R^2 = 0.98548$	$A_0 = 0.46516 \pm 0.06819$	5.25-5.33	1.14		
	Chi ² =1.3551E-7	B'=2.4892±1.00366				
	R↑ hv↑	1.5355 -1.6206		1.13		
AgInGa ₄ Te ₈	$R^2 = 0.99858$	$A_0 = 0.40174 \pm 0.00237$	4.43-4.49			
	Chi ² =2.7937E-8	B'=4.29069±0.73872				
	R↑ hv↑	1.5147 -1.6031				
AgIn ₂ Ga ₃ Te ₈	$R^2 = 0.99562$	$A_0 = 0.37217 \pm 0.00306$	4.10-4.16	1.12		
	Chi ² =6.2346E-8	B'=3.52737±0.97949				
	R↑ hv↑	1.5678 -1.6147				
AgIn ₃ Ga ₂ Te ₈	$R^2 = 0.99965$	$A_0 = 0.42765 \pm 0.00345$	4.74-4.82	1.12		
	Chi ² =2.249E-9	B'=3.78286±0.83482				
	R \uparrow hv \uparrow	1.5058 -1.5859				
AgIn ₄ GaTe ₈	$R^2 = 0.99674$	$A_0 = 0.45719 \pm 0.00281$	5.12-5.22	1.12		
	Chi ² =3.671E-7	B'=3.5419±0.95564				
	R↑ hv↑	1.5302 -1.6250		1 11		
AgIn ₅ Te ₈	$R^2 = 0.99621$	$A_0 = 0.40159 \pm 0.00425$	4.41-4.51	1.11		
	Chi ² =1.1869-E7	B'=4.32968±1.07232		1.11[1]		

TABLE 4 : Indirect energy band gap values of Ag(In_{1-x}Ga_x)₅Te₈ compounds.

Using the data from reflectance measurements E_g is estimated from the fitting of the plot of (R vs. 1/hv) for direct band gap or (R vs. hv) for indirect band gap. As established in the model, the fitting procedures were made using the following equations to obtain the direct or the indirect band gap energies, respectively:

$$R \cong A_0 + \frac{A_1'}{(hv)^2} - \frac{A_2}{(hv)^3}$$
 (1)

where $A_0 = (n-1)^2/(n+1)^2$ and $E_g = A_2/A_1$, being *n* the real refraction index.

$$\mathbf{R} = \mathbf{B}' \frac{\left(\mathbf{h}\mathbf{v} - \mathbf{E}_{g}\right)^{4}}{\left(\mathbf{h}\mathbf{v}\right)^{4}} + \mathbf{A}_{0}$$
(2)

where $A_0 = (n-1)^2/(n+1)^2$, $B' = (B^2c^2h^2)/[16\pi^2(n+1)^2]$ and

$$B = \frac{\pi e^{2} h}{4 n c m_{e}^{2}} \frac{C}{(2\pi)^{3}} \left(\frac{2 m_{v}^{*}}{\hbar^{2}}\right)^{3/2} \left(\frac{2 m_{e}^{*}}{\hbar^{2}}\right)^{3/2} n_{p}$$
(3)

where *C* is a matrix element that connects initial and final states, n_p is the phonon occupation number, and m_v^* and m_c^* are, respectively, the effective masses of holes and electrons.

Figure 8a shows the fit of the reflectance of AgIn₅Te₈ to Eq. (1) for direct band gaps. The fitted reflectance decreases ($R\downarrow$) when 1/hv increases ($1/hv\uparrow$) between $2/3E_{p}$ and $1/E_{p}$ and the concavity of the fitted curve

follows the concavity of the measured reflectance, just as described by Díaz^[19]. Figures 8b shows the fit of the reflectance of AgIn₅Te₈ to Eq. (2) for indirect band gaps. In this case, the fitted values increase $(R\uparrow)$ with energy values $hv \ge E_a$ and the concavity of the fitted curve follows the concavity of the measured reflectance, following Diaz^[19] criteria. TABLES 3 and 4 list all the values obtained from the different fittings. The fitting of the reflectance of Ga-rich compounds using Eq. (1) for direct band gaps resulted in too low R-square values (<0.5), indicating a non reliable fitting. The reflectance of all the studied compositions was fitted to Eq. (2) for indirect band gaps, obtaining good R-square values (>0.9). The direct and indirect band gap energies obtained for AgIn₅Te₂ are in good agreement with those measured by other authors^[1] using transmittance and resistivity measurements. The values of the real refraction index n were obtained from the minimum and maximum A_0 values, being more reliable those obtained from indirect band gap fittings, which are in good agreement with the *n* values for tellurium for normal incidence with $E \perp_{c}^{h} [^{15}]$.

CONCLUSIONS

Ingots of $Ag(In_{1-x}Ga_x)_5 Te_8$ were obtained by direct fusion of the stoichiometric mixture of the elements. The

Full Paper o

system showed p-type conductivity except for x=0.2that showed an n-type conductivity. The X-ray powder diffraction patterns confirmed that a single phase with tetragonal structure occurs for the studied Ag(In, Ga_), Te_a compounds. The variation of the unit-cell lattice parameters a and c were reported and a structural transition from tetragonal thiogallate to tetragonal scheelite was estimated at x=0.73. The melting temperatures increase with gallium composition. The band gap energy values and the real refraction indices were estimated from reflectance measurements. The fittings to obtain indirect band gap energies resulted more reliable than those to obtain direct band gap energies, authors suggest that Eq. (1) probably needs to consider the phonon contribution when the studied material has both direct and indirect band gaps.

ACKNOWLEDGEMENTS

This work was supported by grants from FONACIT (contract number 201100542) and CONDES-LUZ (contract number CC-0089-12).

REFERENCES

- A.Sánchez, L.Meléndez, J.Castro, J.A.Hernández, E.Hernández, C.A.Durante Rincón; Structural, optical, and electrical properties of AgIn₅Te₈, J.Appl.Phys., **97**, 0535051-0535054 (**2005**).
- [2] R.Shukla, P.Khurana, K.K.Srivastava; Photoelectrical properties of AgInTe₂.Philos.Mag.B, 64 389 (1991).
- [3] A.J.Mora, G.E.Delgado, C.Pineda, T.Tinoco; Synthesis and structural study of the AgIn₅Te₈ compound by X-ray powder diffraction, Phys.Stat. Sol.(a), 201(7), 1477-1483 (2004).
- [4] A.El-Korashy, M.A.Abdel-Rahim, H.El-Zahed, Optical absorption studies on AgInSe₂ and AgInTe₂ thin films, Thin Solid Films, **338(1,2)**, 207 (**1999**).
- [5] N.S.Orlova, I.V.Bodnar, E.A.Kudritskaya; Structural and physical-chemical properties of the ternary compounds CuIn_5S_8 and AgIn_5S_8 , Inst.Phys. Conf.Series, **152**, 147-150 (**1998**).
- [6] M.Guittard, J.Rivet, A.Mazurier, S.Jaulmes, P.H.Fourcroy; Systeme Ag₂Te-Ga₂Te₃. Phases intermediaries, Determinations structurales, Diagramme de Phase, Mat.Res.Bull., 23, 217-225 (1988).
- [7] V.Krämer, H.Hirth, M.Hoffherr, H.-P.Trah; Phase

Materials Science Au Iudiau Ijourual studies in the systems $Ag_2Te-Ga_2Te_3$, $ZnSe-In_2Se_3$ and $ZnS-Ga_2S_3$. Thermochimica Acta, **112(1)**, 88-94 (**1987**).

- [8] C.Julien, I.Ivanov, A.Khelfa, F.Alapini, M.Guittard; Characterization of the ternary compounds AgGaTe₂ and AgGa₅Te₈, J.of Mat.Science, **31**, 3315-3319 (**1996**).
- [9] L.S.Palatnik, E.I.Rogacheva; Phase diagrams and structure of some semiconductor A₂^IC^{VI}- B₂^{III} C^{VI} alloys, Soviet Physics - Doklady, **12**(5), 503 -506 (**1967**).
- [10] Z.Bahari, J.Rivet, B.Legendre, J.Dugué; Study of the Ag-In-Te ternary system I.Description of the triangle Ag₂Te-In₂Te₃-Te, J.Alloys Compd., 282, 164-174 (1999).
- [11] Z.Bahari, J.Rivet, B.Legendre, J.Dugué; Study of the Ag-In-Te ternary system II.Description of the quadrilateral Ag-Ag₂Te-In₂Te₃-In, J.Alloys Compd., 289, 99-115 (1999).
- [12] H.Matsushita, S.Endo, T.Irie; Thermodynamical Properties of I-III-VI₂-Group Chalcopyrite Semiconductors, Jap.J.of Applied Phys., 30(6), 1613-1615 (1991).
- [13] A.Charoenphakdee, K.Kurosaki, H.Muta, M.Uno, S.Yamanaka; Thermal Conductivity of the ternary compounds: AgMTe2 and AgM5Te8 (M=Ga or In), Materials Transactions, 50(7), 1603-606 (2009).
- [14] L.Durán, J.Castro; Crecimiento, propiedades estructurales, térmicas ópticas del $Ag(In_{0.6}Ga_{0.4})_5Te_8$, Revista Venezolana de Ciencia y Tecnología, 1(1), 1-10 (2010).
- [15] J.H.Weaver, H.P.R.Frederikse; Optical properties of metals and semiconductors, CRC Handbok of Chemistry and Physics, 77th Edition, CRC Press, Boca Raton, Fl, 12.126-12.150 (1996).
- [16] M.Bettini; Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI₂ chalcopyrite compounds, Solid State Communications, 13, 599-602 (1973).
- [17] J.Gan, J.Tauc, V.G.Lambrecht, M.Robbins; On the 3d electron contribution to the electronic structure of tetrahedral I-III-VI₂ compounds, Solid State Communications, **15**, 605-607 (**1974**).
- [18] C.Rincón, J.González, G.Sánchez Pérez; Reflectance and absorption spectra near the band gap in CuInSe₂ Solid State Communications, 48(12), 1001-1002 (1983).
- [19] R.Díaz, J.M.Merino, T.Martín, F.Rueda, M.León; An approach to the energy gap determination from the reflectance measurements, J.Appl.Phys., 83(1), 616-618 (1998).