June 2007





Trade Science Inc.

# Inorganic CHEMISTRY

An Indian Journal

🖻 Full Paper

ICAIJ, 2(2), 2007 [118-125]

### Structural Elucidation Of Lanthanide(III) Nitrates Complexes With Azomethins

Corresponding Author R.V.Singh

Department of Chemistry, University of Rajasthan, Jaipur-302 004 (INDIA). Tel: +91-141-2704677, Fax: +91-141-2708621 E-mail: rvsjpr@hotmail.com

Received: 15<sup>th</sup> May, 2007 Accepted: 20<sup>th</sup> May, 2007

Web Publication Date : 27th May, 2007

#### ABSTRACT

Synthesis and characterization of some lanthanide(III) complexes of azomethines have been reported. The ligands are bibasic tetradentate azomethines having  $O^N O^N O$  donor system. The resulting complexes have been characterized by elemental analysis, molecular weight determinations and conductivity measurements. Based on the these studies and the spectral studies including IR and X-ray powder diffraction spectra the probable structures of the complexes have been proposed. © 2007 Trade Science Inc. -INDIA

#### INTRODUCTION

Schiff base metal complexes have played a major role in the development of coordination chemistry. Metal complexes with ligands having N and O donor ligands aroused considerable interest in view of their industrial and biological importance<sup>[1]</sup>. Many of these compounds possess a wide spectrum of medicinal properties, including activity against tuberculosis, leprosy and bacterial and viral infections<sup>[2]</sup>. The chemistry of azomethines has become more and more apparent and occupied the place of consider-

Co-Authors Ritu Singh, Monika Swami Department of Chemistry, University of Rajasthan, Jaipur-302 004 (INDIA).

#### KEYWORDS

Lanthanides complexes; Azomethines; IR spectra; X-Ray powder diffraction spectra.

able attention because of their well established industrial and biological importance<sup>[3]</sup>. O<sup>N</sup>N donor compounds have received great impetus in recent years due to perhaps their remarkable, potential in inhibiting ribonucleotide reductase, an obligatory enzyme in DNA synthesis<sup>[4]</sup>. They are also useful as potential drugs, fungicidal and antibacterial agents<sup>[5]</sup>. The chelating properties of the Schiff bases derived from 2-hydroxy aldehydes and ketones display manifold applications in medicine, industry and agriculture<sup>[6]</sup>.

Over the past few years, trivalent lanthanide com-

## 🗢 Full Paper

plexes have been confirmed useful in many applications, such as luminescent probes, lasers and organic light emitting diodes<sup>[7]</sup>. Complexes of rare earth metal ions have been extensively studied<sup>[8,9]</sup> and an interesting property, which the complexes exhibit is the hypersensitivity of some of the transition on replacement of water molecules in the coordination sphere by some other ligands. Some of the rare earth complexes are useful laser materials<sup>[10]</sup>. Lanthanide chelates used as fluorescence labels in diagnosis and biotechnology. Certain lanthanide complexes are known to emit strong luminescence<sup>[11]</sup>. Lanthanides fulfill all the optimum conditions for high coordination i.e. high charge and small size<sup>[12]</sup>. Therefore, there is a wide scope to study the lanthanide complexes with azomethines. During these investigations such complexes with two bifunctional tetratentate azomethiens have been synthesized and characterized.

#### EXPERIMENTAL

The chemicals and solvents used were of analytical grade and pure quality. Hydrated nitrates of lanthanides were used as such. All the chemicals and solvents were dried and purified by the standard methods.

#### Preparation of the azomethines[SBH<sub>2</sub>]

N,N'-1,2-propylenebis(2-hydroxyaceto phenoneimine) and N,N'-1,3-propylenebis (2-hydroxy acetophenone imine) were prepared by the condensation of 2-hydroxyacetophenone with 1,2-

|                                                                                                                                                                                                                                                                            | Analysis (%)  |                   |              |                  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|--------------|------------------|--|--|--|--|
| Compound                                                                                                                                                                                                                                                                   | Ln            | С                 | Н            | Ν                |  |  |  |  |
| I man                                                                                                                                                                                                                                                                      | found         | found             | found        | found            |  |  |  |  |
|                                                                                                                                                                                                                                                                            | (calcd.)      | (calcd.)          | (calcd.)     | (calcd.)         |  |  |  |  |
| N,N'-1,2-Propylenebis(2-hydroxyacetophenoneimine)<br>OC <sub>6</sub> H <sub>4</sub> CCH <sub>3</sub> NHCH <sub>2</sub> CH(CH <sub>3</sub> )NHCCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> O(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> )              | -             | 72.78<br>(72.55)  | 7.25 (7.14)  | 8.90 (9.01)      |  |  |  |  |
| N,N'-1,3-Propylene bis(2-hydroxyacetophenoneimine)<br>OC <sub>6</sub> H <sub>4</sub> CCH <sub>3</sub> NHCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NHCCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> O(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) | -             | 72.98<br>(72.55)  | 7.22 (7.14)  | 9.00 (9.01)      |  |  |  |  |
| $[La(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 14.87 (14.69) | 48.59<br>(48.27)  | 4.58 (4.69)  | 10.45<br>(10.37) |  |  |  |  |
| $[Pr(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 14.69 (14.87) | 47.93<br>(48.16)  | 4.75 (4.68)  | 10.19<br>(10.35) |  |  |  |  |
| $[Nd(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 15.36 (15.17) | 48.31<br>(47.99)  | 4.60 (4.66)  | 10.47<br>(10.31) |  |  |  |  |
| $[Sm(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 15.45 (15.71) | 48.0-3<br>(47.68) | 4.71 (4.63)  | 10.09<br>(10.24) |  |  |  |  |
| $[Gd(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 16.09 (16.31) | 47.94<br>(47.35)  | 4.67 (4.60)  | 10.31<br>(10.17) |  |  |  |  |
| $[Tb(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 16.73 (16.46) | 47.03<br>(47.28)  | 4.66 (4.59)  | 10.33<br>(10.16) |  |  |  |  |
| $[Dy(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                                                                                                                                                                                       | 16.39 (16.77) | 47.32<br>(47.10)  | 4.45 (4.57)  | 10.25<br>(10.12) |  |  |  |  |
| $[La(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                                                                                                                                                                                     | 14.91 (14.69) | 48.74<br>(48.27)  | 4.57 (4.68)  | 10.22<br>(10.37) |  |  |  |  |
| $[\Pr(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                                                                                                                                                                                    | 14.64 (14.87) | 48.38<br>(48.16)  | 4.75 (4.68)  | 10.54<br>(10.35) |  |  |  |  |
| $[Nd(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                                                                                                                                                                                     | 15.06 (15.17) | 50.37<br>(47.99)  | 4.60 (46.66) | 10.10<br>(10.31) |  |  |  |  |
| $[Sm(C_{19}H_{22}N_2O_2)_2]*(NO_3)_3$                                                                                                                                                                                                                                      | 15.82 (15.71) | 48.09<br>(47.68)  | 4.54 (4.63)  | 10.39<br>(10.24) |  |  |  |  |
| $[Gd(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                                                                                                                                                                                     | 16.39 (16.31) | 47.79<br>(47.35)  | 4.71 (4.60)  | 10.29<br>(10.17) |  |  |  |  |
| $[Tb(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                                                                                                                                                                                     | 16.27 (16.46) | 47.01<br>(47.28)  | 4.67 (4.59)  | 10.03<br>(10.16) |  |  |  |  |
| $[Dy(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                                                                                                                                                                                     | 16.90(16.77)  | 47.49<br>(47.10)  | 4.49 (4.57)  | 10.27<br>(10.12) |  |  |  |  |

#### TABLE 1: Analysis of the azomethines and their complexes

Inorganic CHEMISTRY Au Iudian Journal

## Full Paper a

propylenediamine and 1,3-propylediamine in 2:1 molar ratio in the medium of absolute alcohol. The contents were refluxed on a water bath for few hours and on cooling, fine crystals separated out. These were filtered and further purified by recrystallization from the same solvent. The particulates of their analyses are given in TABLE 1.

#### Synthesis of the complexes

Reactions of lanthanon nitrate hexahydrates  $Ln(NO)_3.6H_2O$  with N,N'-(1,2 or 1,3)propylenebis (2-hydroxyacetophenoneimine) Lanthanon nitrate hexahydrates,  $Ln(NO)_3.6H_2O$ [Where Ln=La(III), Pr(III), Nd(III), Gd(III), Tb(III), Dy(III) and Sm(III)] were dissolved in anhydrous acetone and the solution of bibasic tetradentate ligands, N,N'-(1,2or1,3)propylenebis(2-hydroxyaceto phenon eimine) ( $C_{19}H_{22}N_2O_2$  or  $C_{19}H_{22}N_2O_2^*$ ) in an slightly excess amount than the stoichiometric ratio of 1:2 in the same solvent was added to it followed by con-

tinuous stirring. A yellow insoluble product separated out immediately in the case, N,N'-1,3-propylenebis(2hydroxyacetophenoneimine) ( $C_{19}H_{22}N_2O_2^*$ ) while it appeared on standing at the room temperature in case of N,N'-1,2-propylenebis (2-hydroxyacetophenon eimine) ( $C_{19}H_{22}N_2O_2$ ). It was filtered, washed several times with the same solvent so as to remove the excess of the ligand if any and then air dried. Finally, the resulting complexes were dried at 50-70°C/ 0.05mm for 3-4hours.The details of the analyses of the resulting compounds are given in TABLE 1.



| Compound                                                                                                           | Characteristics       | M.P.<br>(°C) | Molecular<br>weight Found<br>(Cald.) | Molar<br>conductance<br>Ohm <sup>-1</sup> cm <sup>2</sup> Mole <sup>-1</sup> | Xs**×10-6<br>(c.g.s. unit) | µeff<br>exp.<br>(B.M.) |
|--------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|--------------------------------------|------------------------------------------------------------------------------|----------------------------|------------------------|
| [La(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ](NO <sub>3</sub> ) <sub>3</sub>  | Light yellow<br>solid | 300d         | 973.45<br>(945.73)                   | 234                                                                          | -0.43                      | Dia                    |
| $[\Pr(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                              | Lemon yellow<br>solid | 182d         | 911.04<br>(947.75)                   | 251                                                                          | 5.57                       | 3.60                   |
| $[Nd(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                               | Light yellow<br>solid | 170-<br>71   | 937.58<br>(951.10)                   | 236                                                                          | 5.90                       | 3.71                   |
| $[Sm(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                               | Lemon yellow<br>solid | 180-<br>81   | 915.25<br>(957-18)                   | 240                                                                          | 1.08                       | 1.59                   |
| $[Gd(C_{19}H_{22}N_2O_2)_2](NO_3)_3$                                                                               | Light yellow<br>solid | 184          | 1008.91<br>(964.09)                  | 232                                                                          | 2.61                       | 7.85                   |
| [Tb(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ](NO <sub>3</sub> ) <sub>3</sub>  | Light yellow<br>solid | 180          | 989.94<br>(965.75)                   | 246                                                                          | 39.03                      | 9.62                   |
| [Dy(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ](NO <sub>3</sub> ) <sub>3</sub>  | Light yellow<br>solid | 179          | 945.94<br>(969.33)                   | 242                                                                          | 43.83                      | 10.21                  |
| [La(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ]*(NO <sub>3</sub> ) <sub>3</sub> | Yellow solid          | 168          | 907.58<br>(945.73)                   | 234                                                                          | -0.39                      | Dia.                   |
| $[\Pr(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                            | Yellow solid          | 225-<br>26   | 925.40<br>(947.75)                   | 251                                                                          | 5.63                       | 3.62                   |
| $[Nd(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                             | Yellow solid          | 175-<br>76   | 995.76<br>(951.10)                   | 247                                                                          | 5.53                       | 3.61                   |
| $[Sm(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                             | Yellow solid          | 260-<br>61   | 991.54<br>(957-18)                   | 258                                                                          | 1.11                       | 1.62                   |
| [Gd(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ]*(NO <sub>3</sub> ) <sub>3</sub> | Yellow solid          | 265-<br>66   | 931.02<br>(964.09)                   | 261                                                                          | 26.23                      | 7.88                   |
| [Tb(C <sub>19</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ]*(NO <sub>3</sub> ) <sub>3</sub> | Yellow solid          | 255-<br>56   | 984.89<br>(965.76)                   | 255                                                                          | 39.94                      | 9.73                   |
| $[Dy(C_{19}H_{22}N_2O_2)_2]^*(NO_3)_3$                                                                             | Yellow solid          | 260          | 992.25<br>(969.33)                   | 244                                                                          | 43.29                      | 10.15                  |

#### TABLE 2: Physical properties of the complexes

🖚 Full Paper

| $\frac{1}{12} \frac{1}{12} \frac$ |                    |                      |       |                                      |            |                    |          |     |                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------|--------------------------------------|------------|--------------------|----------|-----|-------------------------------------|--|--|
| d(Å)<br>(obsd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q_{(absd)}=1/d^2$ | Q <sub>(calcd)</sub> | hkl   | Relative<br>intensity I/I<br>Max×100 | d(Å)(obsd) | $Q_{(obsd)}=1/d^2$ | Q(calcd) | hkl | Relative<br>intensity<br>I/IMax×100 |  |  |
| 16.9798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0035             | 0.0035               | 100   | 4.90 vw                              | 4.4578     | 0.0503             | 0.0500   | 220 | 24.1w                               |  |  |
| 13.6917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0053             | 0.0053               | 010   | 7.6 vw                               | 4.3286     | 0.0534             | 0.0532   | 331 | 35.50s                              |  |  |
| 9.7096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0106             | 0.0103               | 001   | 100.0vs                              | 4.2069     | 0.0565             | 0.0565   | 122 | 38.05                               |  |  |
| 9.5012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0111             | 0.0119               | 210   | 100.0vs                              | 4.0187     | 0.0619             | 0.0619   | 421 | 24.6m                               |  |  |
| 8.8377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0128             | 0.0128               | 101   | 21.0w                                | 3.9054     | 0.0656             | 0.0656   | 222 | 34.6s                               |  |  |
| 8.2227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0148             | 0.0148               | 101   | 40.2sh                               | 3.8306     | 0.0681             | 0.0692   | 240 | 19.9w                               |  |  |
| 8.1099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0152             | 0.0156               | 011   | 44.7s                                | 3.7047     | 0.0728             | 0.0729   | 312 | 29.2m                               |  |  |
| 7.5894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0146             | 0.0176               | 120   | 28.1m                                | 3.6085     | 0.0748             | 0.0753   | 122 | 46.4vs                              |  |  |
| 7.1608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0195             | 0.0204               | 220   | 54.5vs                               | 3.5728     | 0.0783             | 0.0787   | 302 | 28.6w                               |  |  |
| 6.5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0235             | 0.0238               | 111   | 20.1m                                | 3.5379     | 0.0799             | 0.0797   | 412 | 29.0m                               |  |  |
| 6.3429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0248             | 0.0257               | 310   | 27.2m                                | 3.4306     | 0.0850             | 0.0848   | 040 | 25.5m                               |  |  |
| 5.8050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0297             | 0.0305               | 320   | 14.7w                                | 3.4048     | 0.0863             | 0.0870   | 521 | 23.9w                               |  |  |
| 5.6041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0318             | 0.0315               | 300   | 23.7m                                | 3.2876     | 0.0925             | 0.0925   | 432 | 23.7w                               |  |  |
| 5.5004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0331             | 0.0330               | 311   | 26.3m                                | 3.1839     | 0.0986             | 0.0986   | 213 | 33.9m                               |  |  |
| 5.2727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0360             | 0.0360               | 211   | 25.7m                                | 3.1618     | 0.1000             | 0.1007   | 203 | 32.3sh                              |  |  |
| 5.1960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0370             | 0.0378               | 321   | 30.8m                                | 3.1292     | 0.1021             | 0.1022   | 113 | 27.7sh                              |  |  |
| 5.0348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0395             | 0.0395               | 230   | 42.0s                                | 3.0253     | 0.1092             | 0.1093   | 412 | 25.7m                               |  |  |
| 4.9238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0412             | 0.0412               | 002   | 40.9s                                | 2.9520     | 0.1148             | 0.1148   | 442 | 23.21w                              |  |  |
| 4.7536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0442             | 0.0443               | 112   | 43.5s                                | 2.9378     | 0.1158             | 0.1158   | 351 | 25.00w                              |  |  |
| 4.5599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0481             | 0.0483               | 112   | 54.5vs                               | 2.8509     | 0.1230             | 0.1229   | 522 | 19.0vw                              |  |  |
| 2.7692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1304             | 0.1308               | 442   | 23.4m                                | 1.9960     | 0.2509             | 0.2516   | 541 | 20.5w                               |  |  |
| 2.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1336             | 0.1332               | 442   | 26.8m                                | 1.9633     | 0.2595             | 0.2594   | 215 | 20.1w                               |  |  |
| 2.6922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1380             | 0.1382               | 303   | 26.8m                                | 1.9356     | 0.2668             | 0.2661   | 352 | 20.8vw                              |  |  |
| 2.5474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1542             | 0.1544               | 233   | 21.9w                                | 1.8790     | 0.2832             | 0.2831   | 544 | 19.4w                               |  |  |
| 2.5061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1593             | 0.1597               | 431   | 23.8m                                | 1.7810     | 0.3152             | 0.3153   | 154 | 18.5w                               |  |  |
| 2.3629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1791             | 0.1794               | 332   | 18.7vw                               | 1.7446     | 0.3284             | 0.3285   | 434 | 17.4vw                              |  |  |
| 2.2767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1929             | 0.1928               | 523   | 23.0w                                | 1.7323     | 0.334              | 0.3335   | 405 | 20.1w                               |  |  |
| 2.2548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1966             | 0.1964               | 143   | 24.8w                                | 1.7278     | 0.3350             | 0.3355   | 534 | 18.3vw                              |  |  |
| 2.2307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2009             | 0.2009               | 424   | 22.8w                                | 1.7202     | 0.381              | 0.3375   | 344 | 18.7vw                              |  |  |
| 2.1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2068             | 0.2068               | 124   | 20.5w                                | 1.7113     | 0.3415             | 0.3423   | 045 | 16.1vw                              |  |  |
| 2.1641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2135             | 0.2132               | 224   | 22.3m                                | 1.6584     | 0.3638             | 0.3637   | 552 | 17.4vw                              |  |  |
| 2.1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2180             | 0.2190               | 153   | 21.6m                                | 1.5938     | 0.3938             | 0.3938   | 515 | 16.5vw                              |  |  |
| 2.1063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2255             | 0.2252               | 513   | 19.2vw                               | 1.5499     | 0.4163             | 0.4170   | 155 | 16.9vw                              |  |  |
| 0.2417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2419             | 532                  | 19.9w | -                                    | -          | -                  | -        | -   | -                                   |  |  |

TABLE 3: X-ray powder diffraction pattern data of  $[Sm(C_{19}H_{22}N_2O_2)_2](NO_3)_3$ 

#### Physical measurements

Molecular weights were determined by the rast camphor method. The metal contents were estimated complexometrically with EDTA using erichrome black T as an indicator. Infrared spectra were recorded on a nicolet megna FTIR-550 spectrophotometer on KBr pellets. Molar conductance measurements were made in anhydrous DMF on a systronic model 305 conductivity bridge. The magnetic moments and magnetic susceptibility were measured by the Gouy's method at room temprature(37±1°C). Nitrogen was estimated by the Kjeldahl's method.

#### **RESULTS AND DISCUSSION**

The reactions of lanthanon nitrates with bibasic

Inorganic CHEMISTRY An Indian Journal

| TABLE 4: X-ray powder diffraction pattern data of $[Sm(C_{19}H_{22}N_2O_{22})_2^*](NO_3)_2$ |                    |                      |     |                                      |                |                    |          |     |                                     |  |
|---------------------------------------------------------------------------------------------|--------------------|----------------------|-----|--------------------------------------|----------------|--------------------|----------|-----|-------------------------------------|--|
| d(Å)<br>(obsd.)                                                                             | $Q_{(absd)}=1/d^2$ | Q <sub>(calcd)</sub> | hkl | Relative<br>intensity I/I<br>Max×100 | d(Å)<br>(obsd) | $Q_{(obsd)}=1/d^2$ | Q(calcd) | hkl | Relative<br>intensity<br>I/IMax×100 |  |
| 15.2245                                                                                     | 0.0043             | 0.0043               | 100 | 16.1w                                | 3.6376         | 0.0755             | 0.0754   | 140 | 51.85                               |  |
| 12.8930                                                                                     | 0.0060             | 0.0059               | 010 | 11.6vw                               | 3.6157         | 0.0765             | 0.0763   | 131 | 46.4sh                              |  |
| 11.1816                                                                                     | 0.0080             | 0.0079               | 001 | 18.7m                                | 3.5587         | 0.0790             | 0.0789   | 143 | 34.8m                               |  |
| 8.8642                                                                                      | 0.0127             | 0.0125               | 021 | 100.0vs                              | 3.0763         | 0.1057             | 0.1057   | 435 | 33.9m                               |  |
| 8.7938                                                                                      | 0.0129             | 0.0133               | 332 | 98.2sh                               | 2.9378         | 0.1158             | 0.1155   | 113 | 27.7w                               |  |
| 8.2227                                                                                      | 0.0148             | 0.0145               | 132 | 73.2vs                               | 2.7734         | 0.1300             | 0.1297   | 135 | 33.0m                               |  |
| 7.9286                                                                                      | 0.0159             | 0.0159               | 110 | 82.2vs                               | 2.4859         | 0.1617             | 0.1617   | 251 | 32.2w                               |  |
| 7.6881                                                                                      | 0.0169             | 0.0169               | 112 | 58.0s                                | 2.3932         | 0.1746             | 0.1740   | 024 | 29.5w                               |  |
| 7.3566                                                                                      | 0.018              | 0.0185               | 012 | 50.9s                                | 2.2711         | 0.1939             | 0.1936   | 404 | 33.9m                               |  |
| 6.5533                                                                                      | 0.0233             | 0.0233               | 011 | 48.2s                                | 2.0970         | 0.2274             | 0.2277   | 533 | 30.4w                               |  |
| 6.2537                                                                                      | 0.0256             | 0.0255               | 133 | 25.9w                                | 1.9918         | 0.2520             | 0.2509   | 015 | 32.2m                               |  |
| 5.7119                                                                                      | 0.0307             | 0.0310               | 142 | 28.6w                                | 1.9473         | 0.2637             | 0.2647   | 405 | 32.2m                               |  |
| 5.6041                                                                                      | 0.0318             | 0.0316               | 002 | 36.6m                                | 1.8754         | 0.2845             | 0.2844   | 006 | 29.5w                               |  |
| 5.0490                                                                                      | 0.0392             | 0.0391               | 244 | 48.2s                                | 1.8486         | 0.2925             | 0.2935   | 034 | 26.8w                               |  |
| 4.8177                                                                                      | 0.0431             | 0.0431               | 121 | 35.7m                                | 1.8040         | 0.3073             | 0.3073   | 152 | 27.7w                               |  |
| 4.6306                                                                                      | 0.0466             | 0.0469               | 212 | 33.0m                                | 1.6865         | 0.3514             | 0.3516   | 406 | 25.9w                               |  |
| 4.5253                                                                                      | 0.0488             | 0.0485               | 013 | 52.7s                                | 1.6461         | 0.3692             | 0.3697   | 461 | 25.8w                               |  |
| 4.2771                                                                                      | 0.0547             | 0.0549               | 112 | 57.2s                                | 1.6182         | 0.3819             | 0.3825   | 463 | 26.8w                               |  |
| 4.1873                                                                                      | 0.0571             | 0.0572               | 222 | 42.0sh                               | 1.5764         | 0.4025             | 0.4017   | 533 | 27.7w                               |  |
| 4.0368                                                                                      | 0.0614             | 0.0617               | 212 | 46.4m                                | 1.5087         | 0.4391             | 0.4391   | 154 | 26.8w                               |  |
| 3.8635                                                                                      | 0.0670             | 0.0672               | 400 | 35.7m                                | 1.4858         | 0.4529             | 0.4530   | 551 | -                                   |  |
| 3.7047                                                                                      | 0.0729             | 0.0723               | 24s | 37.5w                                | -              | -                  | -        | -   | -                                   |  |

| Full Paper |
|------------|
|------------|

tetradentate azomethines(SBH<sub>2</sub>) have been carried out in 1:2 molar ratio in anhydrous acetone followed by continuous stirring. The reaction can be shown by the following general equation:

## $Ln(NO_3)_3 \cdot 6H_2O + 2[o - HOC_6H_4C(CH_3):N-R-N:(CH_3)CC_6H_4OH-o] \rightarrow [Ln(o - HOC_6H_4C(CH_3):N-R-N:(CH_3)CC_6H_4OH-o)_2](NO_3)_3 + 6H_2O$

[Where, Ln=La(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III) andDy(III);

$$R = \begin{array}{c} -CH_2 - CH \\ \downarrow \\ CH_3 \text{ or } -CH_2 - CH_2 - CH$$

The resulting complexes after being repeatedly washed with dry acetone were found to be fairly stable at the room temperature. The purity of these compounds was further checked by thin layer chromatography on silica gel-G. The physical properties of the complexes are given in TABLE 2.

#### Molar conductance

Inorganic CHEMISTRY An Indian Journal

The molar conductance values of all the lanthanide

chelates ranging from 235-2580hm<sup>-1</sup> cm<sup>2</sup> mol<sup>-1</sup> indicating that these chelates behave as 1:3 electrolytes in DMF. The cation species in these complexes may, therefore, be formulated as  $[Ln(SBH_2)_2]^{+3}$  (where Ln= La(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III) and Dy(III); SBH<sub>2</sub>=N,N'-(1,2or1.3) propylenebis(2hydroxyacetophenoneimine) showing that all the three nitrate anions remain outside the coordination sphere and do not take part in coordination to the metal atom. Thus, the lanthanide chelates may be structurally represented as shown in figure 1.

#### Magnetic susceptibilities and magnetic moments

The values of magnetic susceptibilities and magnetic moments reveal that the lanthanum complexes of N,N'-(1,2or1.3) propylenebis(2-hydroxyaceto phenoneimine) are diamagnetic, whereas the corresponding azomethine derivatives of Pr(III), Nd(III), Sm(III), Gd(III), Tb(III) and Dy(III) are paramagnetic in nature.

🖚 Full Paper

| TABLE 5: X-ray powder diffraction pattern data of $[Gd(C_{19}H_{22}N_2O_{22})_2](NO_3)_2$ |                    |                      |     |                                      |                |                    |                      |     |                                     |  |  |
|-------------------------------------------------------------------------------------------|--------------------|----------------------|-----|--------------------------------------|----------------|--------------------|----------------------|-----|-------------------------------------|--|--|
| d(Å)<br>(obsd.)                                                                           | $Q_{(absd)}=1/d^2$ | Q <sub>(calcd)</sub> | hkl | Relative<br>intensity I/I<br>Max×100 | d(Å)<br>(obsd) | $Q_{(obsd)}=1/d^2$ | Q <sub>(calcd)</sub> | hkl | Relative<br>intensity<br>I/IMax×100 |  |  |
| 15.6284                                                                                   | 0.0041             | 0.0042               | 100 | 10.5vw                               | 4.3287         | 0.0534             | 0.0533               | 221 | 37.9m                               |  |  |
| 13.2803                                                                                   | 0.0057             | 0.0058               | 010 | 9.50vw                               | 4.2168         | 0.0562             | 0.0564               | 130 | 41.6m                               |  |  |
| 11.1114                                                                                   | 0.0081             | 0.0079               | 001 | 13.7vw                               | 4.0368         | 0.0614             | 0.0610               | 320 | 26.8w                               |  |  |
| 9.8720                                                                                    | 0.0103             | 0.0100               | 110 | 100.0vs                              | 3.9569         | 0.0639             | 0.0640               | 301 | 34.2m                               |  |  |
| 9.6043                                                                                    | 0.0108             | 0.0103               | 011 | 100.0vs                              | 3.9224         | 0.0650             | 0.0651               | 403 | 41.0m                               |  |  |
| 8.9267                                                                                    | 0.0126             | 0.0125               | 201 | 28.0w                                | 3.8306         | 0.0681             | 0.0679               | 423 | 25.3w                               |  |  |
| 8.3388                                                                                    | 0.0144             | 0.0149               | 211 | 51.0sh                               | 3.7123         | 0.0726             | 0.0728               | 202 | 32.1w                               |  |  |
| 8.1848                                                                                    | 0.0149             | 0.0152               | 111 | 70.0vs                               | 3.6085         | 0.0768             | 0.0756               | 333 | 43.2s                               |  |  |
| 7.6549                                                                                    | 0.0171             | 0.0171               | 011 | 35.8m                                | 3.4371         | 0.0847             | 0.0848               | 122 | 32.1w                               |  |  |
| 7.1898                                                                                    | 0.0193             | 0.0182               | 101 | 68.4vs                               | 3.3606         | 0.0855             | 0.0854               | 212 | 23.7w                               |  |  |
| 6.5533                                                                                    | 0.0233             | 0.0232               | 020 | 24.7w                                | 3.2995         | 0.0918             | 0.0917               | 241 | 32.1m                               |  |  |
| 6.3656                                                                                    | 0.0247             | 0.023                | 021 | 33.2m                                | 3.1895         | 0.0984             | 0.0984               | 114 | 38.4m                               |  |  |
| 5.8817                                                                                    | 0.0289             | 0.0289               | 221 | 21.6w                                | 3.1292         | 0.1021             | 0.1022               | 124 | 30.0w                               |  |  |
| 5.6041                                                                                    | 0.0318             | 0.0318               | 312 | 27.4w                                | 3.0608         | 0.1068             | 0.1066               | 341 | 25.3w                               |  |  |
| 5.5004                                                                                    | 0.0331             | 0.0332               | 122 | 33.7m                                | 0.0354         | 0.1086             | 0.1156               | 411 | 30.5w                               |  |  |
| 5.2884                                                                                    | 0.0358             | 0.0360               | 121 | 33.7sh                               | 2.9425         | 0.1155             | 0.1156               | 322 | 26.3w                               |  |  |
| 5.211                                                                                     | 0.0368             | 0.0369               | 201 | 41.0m                                | 2.8289         | 0.1249             | 0.1246               | 141 | 23.2vw                              |  |  |
| 5.0634                                                                                    | 0.0390             | 0.0393               | 211 | 47.9s                                | 2.776          | 0.1295             | 0.1295               | 421 | 28.9w                               |  |  |
| 5.0634                                                                                    | 0.0390             | 0.0393               | 211 | 47.9s                                | 2.776          | 0.1295             | 0.1295               | 421 | 28.9w                               |  |  |
| 4.9511                                                                                    | 0.0408             | 0.0412               | 022 | 49.5s                                | 2.7403         | 0.1331             | 0.1330               | 325 | 28.9w                               |  |  |
| 4.77901                                                                                   | 0.0438             | 0.0438               | 321 | 49.4s                                | 2.6961         | 0.1375             | 0.1372               | 123 | 27.4w                               |  |  |
| 4.5715                                                                                    | 0.0478             | 0.0480               | 102 | 56.3s                                | 2.6650         | 0.1408             | 0.1405               | 213 | 24.7w                               |  |  |
| 4.4689                                                                                    | 0.0501             | 0.0500               | 402 | 30.0w                                | 2.5758         | 0.1508             | 0.1570               | 124 | 23.2vw                              |  |  |
| 2.5509                                                                                    | 0.1537             | 0.1539               | 03  | 24.7w                                | 2.0170         | 0.2458             | 0.2459               | 435 | 23.4vw                              |  |  |
| 2.5095                                                                                    | 0.1590             | 0.1590               | 152 | 23.7vw                               | 1.9877         | 0.2530             | 0.2530               | 153 | 24.7w                               |  |  |
| 2.3810                                                                                    | 0.1764             | 0.1764               | 133 | 23.2vs                               | 1.9572         | 0.2612             | 0.2611               | 453 | 25.8w                               |  |  |
| 2.3659                                                                                    | 0.1786             | 0.1786               | 332 | 22.4vw                               | 1.8717         | 0.2855             | 0.2850               | 234 | 22.6w                               |  |  |
| 2.3218                                                                                    | 0.1855             | 0.1854               | 333 | 22.4vw                               | 1.8433         | 0.2944             | 0.2943               | 433 | 20.0vw                              |  |  |
| 2.2413                                                                                    | 0.1992             | 0.1989               | 251 | 26.8w                                | 1.8312         | 0.2983             | 0.2981               | 215 | 18.9vw                              |  |  |
| 2.1943                                                                                    | 0.2078             | 0.2074               | 323 | 22.9vw                               | 1.7892         | 0.3125             | 0.3112               | 523 | 22.6w                               |  |  |
| 2.1641                                                                                    | 0.2135             | 0.2133               | 255 | 24.7w                                | 1.7308         | 0.3337             | 0.3325               | 225 | 24.2w                               |  |  |
| 2.1518                                                                                    | 0.2160             | 0.2158               | 343 | 25.3w                                | 1.6543         | 0.3656             | 0.3648               | 534 | 21.6w                               |  |  |
| 2.0517                                                                                    | 0.2374             | 0.2374               | 304 | 24.2w                                | 1.6169         | 0.3824             | 0.3833               | 255 | 21.6w                               |  |  |

#### Infrared spectra

Both the azomethines, N,N'-(1,2or1.3\*) propylenebis (2-hydroxyacetophenoneimine) do not show any absorption band of free OH group in the region, 3500-3200cm<sup>-1</sup> on account of strong hydrogen bonding. A broad band appears in the range 3050-2850cm<sup>-1</sup> in the ligands and this may be attributed to the O---H-N or O-H---N type of hydrogen bonding and overlapping with  $\nu$ CH vibrations. However, in the IR spectra of these azomethine derivatives of lanthanides, a medium broad band is observed in the region. 3450-3200cm<sup>-1</sup> and this may be due to the presence of vOH indicating the breaking of hydrogen bonding in the ligands on complexation through both the oxygen and nitrogen atoms of the phenolic and azomethine groups respectively to the lanthanon atoms. A very strong band at ~1610cm<sup>-1</sup>

## Full Paper 🛥

| TABLE 6: X-ray powder diffraction pattern | data of | $[Gd(C_{10}H_{22}N_{2}O_{2})^{*}](NO_{3})_{2}$ |
|-------------------------------------------|---------|------------------------------------------------|
|-------------------------------------------|---------|------------------------------------------------|

| d(Å)            | $d(\hat{A}) = O_{11} - 1/d^2$ |         | hkl | Relative<br>intensity I/I | d(Å)   | $\Omega_{(abad)} = 1/d^2$ | Q <sub>(anlad</sub> ) | hkl | <b>Relative</b><br>intensity |
|-----------------|-------------------------------|---------|-----|---------------------------|--------|---------------------------|-----------------------|-----|------------------------------|
| (obsd.)         | <b>X</b> (absd) 1/4           | (calcd) | III | Max×100                   | (obsd) |                           | (calco)               | mxi | I/IMax×100                   |
| 147 <u>+</u> 75 | 0.0046                        | 0.0046  | 100 | 27.1m                     | 3.1618 | 0.1000                    | 0.0995                | 223 | 43.7w                        |
| 10.9736         | 0.003                         | 0.0082  | 010 | 21.5w                     | 3.0660 | 0.1064                    | 0.1064                | 420 | 46.5w                        |
| 10.0972         | 0.0098                        | 0.0099  | 001 | 24.7m                     | 2.9425 | 0.1155                    | 0.1152                | 330 | 39.6vw                       |
| 8.7504          | 0.0131                        | 0.0128  | 110 | 93.7vs                    | 2.7692 | 0.1304                    | 0.1306                | 431 | 42.4vw                       |
| 8.1099          | 0.0152                        | 0.0158  | 201 | 74.30s                    | 2.6961 | 0.1375                    | 0.1372                | 141 | 43.0w                        |
| 7.8237          | 0.0163                        | 0.0159  | 111 | 100.0vs                   | 2.5615 | 0.1525                    | 0.1530                | 333 | 42.7w                        |
| 7.5571          | 0.0175                        | 0.0175  | 011 | 94.4vs                    | 2.3451 | 0.1819                    | 0.1813                | 133 | 42.0w                        |
| 7.3384          | 0.0186                        | 0.0186  | 011 | 56.2sh                    | 2.3189 | 0.1860                    | 0.1856                | 524 | 43.0w                        |
| 6.9370          | 0.0208                        | 0.0208  | 101 | 38.2vw                    | 2.2767 | 0.1929                    | 0.1933                | 313 | 4.4w                         |
| 6.5053          | 0.0236                        | 0.0235  | 211 | 66.7s                     | 2.2657 | 0.1947                    | 0.1946                | 243 | 45.5m                        |
| 6.2100          | 0.0259                        | 0.0266  | 210 | 40.3w                     | 2.2202 | 0.2029                    | 0.2034                | 341 | 42.4w                        |
| 5.6041          | 0.0318                        | 0.0317  | 102 | 50.0w                     | 2.1994 | 0.2068                    | 0.2070                | 415 | 43.0w                        |
| 5.5174          | 0.0329                        | 0.0328  | 020 | 53.5m                     | 2.1276 | 0.2209                    | 0.2208                | 105 | 42.7w                        |
| 5.2417          | 0.0364                        | 0.0374  | 120 | 50.0m                     | 1.9513 | 0.2628                    | 0.2627                | 452 | 42.4w                        |
| 5.0348          | 0.0395                        | 0.0396  | 002 | 55.6n                     | 1.9240 | 0.2702                    | 0.2708                | 544 | 45.1m                        |
| 4.7919          | 0.0436                        | 0.0435  | 302 | 54.9m                     | 1.8381 | 0.2959                    | 0.2959                | 551 | 41.0w                        |
| 4.6068          | 0.0471                        | 0.0467  | 012 | 48.6w                     | 1.8024 | 0.3079                    | 0.3077                | 513 | 39.6w                        |
| 4.5026          | 0.0493                        | 0.0495  | 211 | 61.1s                     | 1.7810 | 0.3152                    | 0.3154                | 345 | 39.9w                        |
| 4.2267          | 0.0560                        | 0.0567  | 102 | 79.2vs                    | 1.7354 | 0.3322                    | 0.3320                | 404 | 37.2vw                       |
| 3.9482          | 0.0642                        | 0.0642  | 321 | 49.3m                     | 1.7217 | 0.3373                    | 0.3373                | 345 | 39.6w                        |
| 3.8225          | 0.0684                        | 0.0680  | 222 | 52.1m                     | 1.6794 | 0.3548                    | 0.3552                | 334 | 38.2w                        |
| 3.7509          | 0.0711                        | 0.0703  | 412 | 50.0w                     | 1.6488 | 0.3678                    | 0.3677                | 045 | 36.8vw                       |
| 3.6013          | 0.0771                        | 0.0765  | 213 | 56.2m                     | 1.6169 | 0.3824                    | 0.3827                | 305 | 36.1vw                       |
| 3.5728          | 0.0783                        | 0.0784  | 130 | 54.0sh                    | 1.6091 | 0.3864                    | 0.3864                | 355 | 36.1vw                       |
| 3.5310          | 0.0802                        | 0.0804  | 131 | 47.2w                     | 1.6014 | 0.3901                    | 0.3897                | 045 | 36.1vw                       |
| 3.2639          | 0.0939                        | 0.0938  | 422 | 48.6w                     | -      | -                         | -                     | -   | -                            |

TABLE 7: Unit cell parameters of bis-[N,N'-1,2 or 1,3-propylenebis(2-hydroxyacetophenoneiminato)] samaruim(III) or gadolinium(III) nitrate complexes

| Compound                             | Symmetry  | a<br>(Å) | b<br>(Å) | с<br>(Å) | α                    | β                      | γ                    | V<br>Å <sup>3</sup> | d(gm/cm <sup>3</sup> ) | z |
|--------------------------------------|-----------|----------|----------|----------|----------------------|------------------------|----------------------|---------------------|------------------------|---|
| $[Sm(C_{19}H_{22}N_2O_2)_2](NO_3)_3$ | Triclinic | 18.75    | 15.19    | 9.89     | 87º47'               | 95º12'                 | 115°15'              | 2538                | 1.78                   | 3 |
| $[Sm(C_{19}H_{22}N_2O_2)_2](NO_3)_3$ | Triclinic | 26.35    | 30.95    | 21.173   | $148^054^{\prime}$   | <b>46</b> <sup>0</sup> | 144 <sup>0</sup> 14' | 5373                | 1.53                   | 5 |
| [Gd(C19H22N2O2)2](NO3)3              | Triclinic | 18.41    | 13.75    | 13.87    | $107^{0}12^{\prime}$ | 123°1'                 | $80^{0}44^{\prime}$  | 2808                | 1.80                   | 3 |
| $[Gd(C_{19}H_{22}N_2O_2)_2](NO_3)_3$ | Triclinic | 16.64    | 11.05    | 11.35    | 91°58'               | 117°5'                 | 89°5'                | 1849                | 1.82                   | 2 |

may be attributed to the vC=N of the ligands. The bands at ~1385cm<sup>-1</sup> of strong intensity and ~815cm<sup>-1</sup> of medium intensity are observed in the azomethine derivatives of lanthanons due to the ionic nitrate with  $D_3$  symmetry. This indicates that all the three nitrate anions remain outside the coordination sphere and do not participate in the coordination. 390±10cm<sup>-1</sup> in the IR spectra of the lanthanon complexes are observed. The former may be assigned to the ring deformation coupled with Ln-O stretching and C-CH<sub>3</sub> stretching modes while the latter may be due to Ln-N coordinate linkage.

Further, two new bands at 660±10cm<sup>-1</sup> and

 $\mathbf{C}$ 

Inorganic CHEMISTRY An Indian Journal

#### X-ray diffraction

The X-ray diffraction studies have been carried

124

## 🗩 Full Paper

#### REFERENCES

- R.V.Singh, N.Fahmi, M.K.Biyala; J.Iranian Chem.Soc., 2, 40 (2005).
- [2] S.Laly, G.Parameswaran; Asian J.Chem., 3, 712 (1993).
- [3] M.K.Biyala, N.Fahmi, R.V.Singh; Indian J.Chem., 43, 2536 (2004).
- [4] J.Patole, S.Padhye, S.Padye, C.J.Newton, C.Anson, A.K.Powell; Indian J.Chem., 43A, 1654 (2004).
- [5] H.A.Tang, L.F.Wang, R.D.Yang; Trans.Met.Chem., 43, 395 (2003).
- [6] V.K.Rema Devi, A.Fernandez, M.Aludeen; J.Indian Chem.Soc., 83, 536 (2006).
- [7] P.J.Case, A.W.Harper; Mat.Res.Soc.Symp.Proc., 771 (2003).
- [8] W.F.Sager, N.Filipesa, F.A.Serafin; J.Phys.Chem., 69, 1092 (1965).
- [9] G.A.Croby; Molec.Crystallogr., 1, 37 (1966).
- [10] N.E.Wulf, R.J.Pressley; Appl.Phys.Lett., 2, 152 (1963).
- [11] A.Sigel, H.Sigel, Kazukomatsunoto, J.Yuan; Meta.Ions in Biological Systems, 40, 191 (2003).
- [12] R.K.Agarwal, S.Prasad, N.Goel; Turk.J.Chem., 28, 405 (2004).

out with the help of finely powdered samples to have an idea about the type of molecular symmetry and the lattice constants. The X-ray powder diffractograms for a few representative complexes like, bis-[N,N'-1,2or1,3-propylenebis(2-hydroxyaceto- phenone iminato]samaruim(III)nitrate [Sm(C<sub>10</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>)<sub>2</sub>](NO<sub>3</sub>)<sub>3</sub>, bis-[N,N'-1,2or1,3-propylenebis(2hydroxyacetophenoneiminato] gadolinium(III) nitrate[Gd(C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>)<sub>2</sub>](NO<sub>2</sub>)<sub>3</sub>, bis-[N,N'-1,2or1,3propylenebis(2-hydroxyaceto- phenoneiminato] samarium(III) nitrate [Sm(C<sub>10</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>)<sub>2</sub>\*](NO<sub>3</sub>)<sub>3</sub> and bis-[N,N'-1,2or1,3-propylenebis(2-hydroxyaceto phenoneiminato]gadolinuim(III)nitrate  $[Gd(C_{10}H_{22}N_{2}O_{2})^{*}]$  (NO<sub>3</sub>), have been recorded and their interplanar spacings values 'd' as well as the relative intensities of the peaks have been measured and summarized in TABLES 3 to 6 along with the reciprocal lattice values  $Q_{obsd.}$  (=1/d<sup>2</sup>obsd.) for each 'd' values. These results show that the newly isolated complexes crystallize in triclinic type of lattice symmetry and their unit cell parameters are mentioned in TABLE 7.