

Research | Vol 15 Iss 4

Strongly Prime Γ -Semigroup

Jyothi V^{1*}, Sarala Y¹, Madhusudhana Rao D² and Nageswara Rao T³

¹Department of Mathematics, KL University, Guntur, Andhra Pradesh, India

²Department of Mathematics, NIT, Andhra Pradesh, India

³Department of Mathematics, V.S.R & N.V.R College, Tenali, Andhra Pradesh, India

***Corresponding author:** Jyothi V, Department of Mathematics, KL University, Guntur, Andhra Pradesh, India, Tel: 0863-2399999; E-mail: <u>jyothi.mindspace@gmail.com</u>

Received: September 08, 2017; Accepted: October 23, 2017; Published: October 25, 2017

Abstract

The paper introduces the concepts of β -insulator and strongly prime-semigroups. Several characterizations of them are furnished.

Keywords: β Insulator; Strongly prime; Right and left α -annihilator

Introduction

The idea of general semigroups was developed by Anjaneyulu [1]. Saha defined Γ -semigroup as a generalization of semigroup as follows. Various kinds of Γ -semigroups have been widely studied by many authors [2-6].

In this paper we introduce and study the structure of β -insulator and strongly prime Γ -semigroups. In this paper many important results of strongly prime ideals in semigroups have been extended to strongly prime ideals in Γ -semigroups.

Prime and semiprime ideals of Γ -semigroups

Definition 1.1: A subset A of a Γ -semigroup S is said to be an m-system if $A = \phi$ or if $x, y \in A$ implies $\langle x \rangle \Gamma \langle y \rangle \cap A \neq \phi$

Definition 1.2: A subset *A* of a Γ -semigroup *S* is said to be an *n* – system if $A = \phi$ or if $x \in A$ implies $\langle x \rangle \cap A \neq \phi$

Lemma 1.3: Let S be a Γ -semigroup. An ideal A in S is semiprime if and only if A^{C} is an n – system.

Proof: Suppose that A is a semiprime ideal and let $a \in A^c$. Then $a \notin A$. Since A is semiprime $\langle a \rangle \Gamma \langle a \rangle \not\subset A$. It implies that $\langle a \rangle \Gamma \langle a \rangle \cap A^c \neq \phi$ so that A^c is an n-system.

Citation: Jyothi V, Sarala Y, Madhusudhana Rao D, et al. Strongly Prime Γ -Semigroup. Int J Chem Sci. 2017;15(4):206 © 2017 Trade Science Inc.

Conversely, suppose A^C is an n – system and let $a \notin A$. We shall prove that $\langle a \rangle \Gamma \langle a \rangle \not\subset A$. Since A^C is an n – system. $\langle a \rangle \Gamma \langle a \rangle \cap A^C \neq \phi$. Put $z \in \langle a \rangle \cap A^C$. So that $z \in \langle a \rangle \Gamma \langle a \rangle$ and $z \notin A$. Hence $\langle a \rangle \Gamma \langle a \rangle \not\subset A$. Thus, A is a semiprime ideal.

Definition 1.4: For any ideal Q of a Γ -semigroup S, we define n(Q) to the set of elements x such that every n – system containing x of S contains an element of Q.

Definition 1.5: An ideal Q in a Γ -semigroup S is said to be right primary if for any ideal U and V, $U \Gamma V$ implies $U \subseteq m$ (Q) or $V \subseteq Q$.

Theorem 1.6: Let S be a Γ -semigroup for any right primary ideal P in S, the following are equivalent

- (i) P is a prime ideal.
- (ii) P=n (P).
- (iii) *P* is a semiprime ideal.

Proof: (i) \Rightarrow (ii) Let *P* be a prime ideal then P $\subseteq n$ (P) is obvious. On the other hand, let $x \in n$ (P) and suppose that $x \notin P$. Since *P* is prime, P^C is an *m*-system and $x \in P^C$. Then there exists an *n*-system $N \subseteq P^C$ such that $x \in N$. But *N* is disjoint from *P*, therefore $x \notin n$ (P), which is a contradiction. Hence $x \in P$, so that n (P) $\subseteq P$ (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Suppose that P is a semiprime ideal. We have to prove that P is a prime ideal. Let U and V be any ideal in S with $U \ \Gamma V \subseteq P$. Since P is primary, $U \ \Gamma V \subseteq P$ implies that $U \subseteq m(P)$ or $V \subseteq P$. Since P is a semiprime ideal, P = m(P). Hence, $U \subseteq P$ or $V \subseteq P$. Thus P is a prime ideal in S.

Theorem 1.7: For any ideal *P* in S, *P* is prime if and only if *P* is primary and semiprime.

Proof: Suppose that P is a prime ideal. We have to prove that P is primary. Let U and V be any ideal in S such that $U \\ \Gamma V \subseteq P$. Since P is a prime ideal, $U \subseteq n$ (P) or $V \subseteq P$ by theorem 2.6. Now our claim is that n (P) $\subseteq m$ (P). Let $x \in n$ (P) and S be any m – system containing x. Since is any m – system is an n – system, S is an n – system containing x. Since $x \in n$ (P), S meets P. Hence $x \in m$ (P) and therefore $U \subseteq n$ (P) or $V \subseteq P$ implies that $U \subseteq m$ (P) or $V \subseteq P$. Hence P is a primary ideal. Since every prime ideal is a semiprime ideal, P is semiprime and hence primary ideal.

Conversely, suppose that P is primary and semiprime ideal. By theorem 1.6, P is a prime ideal.

Strongly prime Γ -semigroups

Definition 2.1: Let S be a Γ -semigroup. Let S is said to be semiprime if 0 is a semiprime ideal. S is said to be prime if (0) is a prime ideal.

Definition 2.2: Let S be a Γ -semigroup. If A is a subset of S, we defined a right α -annihilator of A to be a right ideal $r_{\alpha}(A) = \{m \in S \mid A \alpha m = 0\}$

Definition 2.3: Let S be a Γ -semigroup. If A is a subset of S, we defined a left α -annihilator of A to be a left ideal $l_{\alpha}(A) = \{m \in S / m\alpha A = 0\}$

We adopt the symbol S^* to denote the nonzero element of S.

Definition 2.4: A right β -insulator for $a \in S^*$ is a finite subset of S, $M_{\beta}(a)$ such that $r_{\alpha}(\{a\beta c \mid c \in M_{\beta}(a)\}) = (0)$, for all $\alpha \in \Gamma$.

Definition 2.5: A left β -insulator for $a \in S^*$ is a finite subset of S, $M_\beta(a)$ such that $l_\alpha(\{c\beta a \mid c \in M_\beta(a)\}) = (0)$, for all $\alpha \in \Gamma$.

Definition 2.6: A Γ -semigroup S is sad to be a right strongly prime if for every $\beta \in \Gamma$, each non zero element of S, has a right β -insulator, that is for every $\beta \in \Gamma$ and $a \in S^*$, there is a finite subsest $M_{\beta}(a)$ such that for $b \in S$, $\{a\beta c\alpha b/c \in M_{\beta}(a)\} = 0$, for all $\alpha \in \Gamma$ implies b = 0.

Definition 2.7: A Γ -semigroup *S* is sad to be a left strongly prime if for every $\beta \in \Gamma$, each non zero element of *S*, has a left β -insulator, that is for every $\beta \in \Gamma$ and $a \in S^*$, there is a finite subsest $M_{\beta}(a)$ such that for $b \in S$, $\{b\alpha c\beta a/c \in M_{\beta}(a)\} = 0$, for all $\alpha \in \Gamma$ implies b = 0.

Definition 2.8: A Γ -semigroup *S* is sad to be a left weakly semiprime Γ -semigroup if $[x, \Gamma] \neq 0$ for all $x \neq 0 \in S$.

Definition 2.9: A Γ -semigroup *S* is sad to be a right weakly semiprime Γ -semigroup if $[\Gamma, x] \neq 0$ for all $x \neq 0 \in S$.

Definition 2.10: A Γ -semigroup S is sad to be a weakly semiprime Γ -semigroup if it is both left and right weakly semiprime.

Theorem 2.11: Let *S* be a Γ -semigroup with D.C.C on annihilators then *S* is prime if *S* is strongly prime.

Proof: Suppose that S is right strongly prime. To prove S is prime, let $a, b \in S$ such that $a \neq 0$ and $b \neq 0$. Since S is right strongly prime, for every $\beta \in \Gamma$, there exists a right β -insulator $M_{\beta}(a)$ for a. Then $r_{\alpha}(\{a\beta c/c \in M_{\beta}(a)\}) = 0$, $\forall \alpha, \beta \in \Gamma$. Since $b \neq 0, b \notin r_{\alpha}(\{a\beta c/c \in M_{\beta}(a)\}), \forall \alpha, \beta \in \Gamma$, there exists $\alpha, \beta \in \Gamma$ such that $a\beta c\alpha b \neq 0$ where $c \in M_{\beta}(a)$. Hence S is prime.

Conversely, suppose that *S* is prime. We have to prove that *S* is right strongly prime. Let $s \in S^*$ and consider the collection of right α -annihilator ideals of the form $r_{\alpha}(\{s\beta n/n \in I\}), \forall \alpha, \beta \in \Gamma$ where *I* run over all finite subsets of *S* containing the identity. Since *S* satisfies the d.c.c. on right annihilators, choose a minimal element K. If $K \neq \{0\}$, we can find an element $a \in K$ such that $a \neq 0$. Since *S* is a prime Γ -semigroup, it follows from 2.6 theorem, that there exists $b \in S$, $s\gamma b \delta a \neq 0$, for $\gamma, \delta \in \Gamma$.

Consequently A=0.

Let I' be a finite subset of S containing the identity and b. Since, $s \not b \delta a \neq 0$, $a \notin r_{\alpha}(\{s\beta n/n \in I'\})$, a contradiction. This forces that $K = \{0\}$. Thus, s has a right β -insulator $\forall \beta \in \Gamma$. Since $s \in S^*$ is arbitrary, every element of S^* has a right β -insulator $\forall \beta \in \Gamma$. Similarly, every element of S^* has a left β -insulator $\forall \beta \in \Gamma$. Hence S is a strongly prime Γ -semigroup.

Definition 2.12: Let *S* be a Γ -semigroup. A left ideal *I* of *S* is said to be essential if $I \cap J \neq 0$ for all nonzero left ideals *J* of *S*.

Definition 2.13: The singular ideal of a Γ -semigroup *S* is the ideal composed of elements whose right α -annihilator for each $\alpha \in \Gamma$ is an essential right ideal.

Theorem 2.14: If S is a strongly prime Γ -semigroup having no zero devisor, then singular ideal is zero.

Proof: Let S is a strongly prime Γ -semigroup and A be a singular ideal. Suppose that there exists an element $a \in A$ such that $a \neq 0$. Let $M_{\beta}(a)$ be a right β -insulator for a. Since A is an ideal, $a\beta b \in A, \forall b \in M_{\beta}(a)$. Now $r_{\alpha}(\{a\beta b\}) = \{x \in S/(a\beta b)\alpha x = 0\}$ implies that $a\beta b\alpha x = 0, \forall x \in r_{\alpha}(a\beta b), b \in M_{\beta}(a)$. Then $a\beta b\alpha$ $r_{\alpha}(\{a\beta b\}) = 0$. Hence, $a\beta b\alpha [\cap r_{\alpha}(\{a\beta b\})] = 0$. Since A is singular, $r_{\alpha}(\{a\beta b\})$ is essential for all $b \in M_{\beta}(a)$. We know that the intersection of finitely many essential right ideals is nonzero. Since $M_{\beta}(a)$ is finite, $\bigcap_{b \in M_{\beta}(a)} r_{\alpha}(\{a\beta b\}) \neq 0$. Hence $r_{\alpha}(\{a\beta b/b \in M_{\beta}(a)\}) \neq 0$, which is a contradiction to the β -insulator $M_{\beta}(a)$.

Definition 2.15: Let S be a Γ -semigroup. Let us define a relation ρ on $SX\Gamma$ as follows: $(x,\alpha)\rho(y,\beta)$ if and only if $x\alpha s = y\beta s$ for all $s \in S$ and $\gamma x \alpha = \gamma y\beta$ for all $\gamma \in \Gamma$. Then ρ is an equivalence relation. Let $[x,\alpha]$ denote the equivalence class containing $[x,\alpha]$. Let $L = \{[x,\alpha]: x \in S, \alpha \in \Gamma]\}$. Then L is a semigroup with respect to the multiplication defined by $[x,\alpha][y,\beta] = [x\alpha y,\beta]$. This semigroup L is called the left operator semigroup of the Γ -semigroup.

Theorem 2.16: If *S* is a right strongly prime Γ -semigroup, then the left operator Γ -semigroup L(R) is right strongly prime Γ -semigroup.

Proof: Suppose that S is right strongly prime Γ -semigroup. To prove L is right strongly prime Γ -semigroup, it is enough to prove that every nonzero element in L has a right insulator. Let $\bigcup_i [x_i, \alpha_i] \neq 0 \in L$. Then there exists $x \in S$ such that $\bigcup_i [x_i, \alpha_i] x \neq 0$ that is $\bigcup_i x_i \alpha_i x \neq 0$. Since S is right strongly prime, for every $\beta \in \Gamma$, there exist an β -insulator for $\bigcup_i x_i \alpha_i x$ say it $M_\beta = \{a_1, a_2, ..., a_n\}$. Then $r_\alpha(\{\bigcup_i x_i \alpha_i x \beta c / c \in M_\beta\}) = \{0\}, \forall \alpha, \beta \in \Gamma$. Hence for any $s \in S$, $(\bigcup_i x_i \alpha_i x) \beta a_k \alpha s = 0 \ \forall \alpha, \beta \in \Gamma$, $a_k \in M_\beta \Longrightarrow s = 0$ (*). Now fix $\alpha, \beta \in \Gamma$, consider the collection $M_\beta^{'} = \{[x\beta a_1, \alpha], [x\beta a_2, \alpha], ..., [x\beta a_n, \alpha]\}$. We shall prove that $M_\beta^{'}$ is an insulator for $[x_i, \alpha_i]$. It is enough to prove

that $Ann(\{[x_i, \alpha_i]c'/c' \in M_{\beta}^{'}\}) = \{0\}$. Let $\bigcup_i [x_i, \alpha_i] \in Ann(\{\bigcup_i [x_i, \alpha_i]c'/c' \in M_{\beta}^{'}\}) = \{0\}$. Then $\bigcup_i [x_i, \alpha_i][x\beta a_k, \alpha] \cup_i [y_j, \beta_j] = 0, \forall k$. We claim that $\bigcup_i [y_j, \beta_j] = 0$. Now $\bigcup_i [x_i, \alpha_i][x\beta a_k, \alpha] \cup_i [y_j, \beta_j] = 0$, $\forall k$ implies that $\bigcup_i [y_j, \beta_j] = 0, \forall s \in S$. Therefore $\bigcup_i [x_i, \alpha_i][x\beta a_k, \alpha] \cup_i [y_j, \beta_j](s)$. i.e., $\bigcup_i [x_i \alpha_i x \beta a_k, \alpha] \cup_i y_j \beta_j s = 0$. i.e., $\bigcup_i [x_i \alpha_i x \beta a_k \alpha] \bigcup_i y_j \beta_j s = 0$. By (*), $\bigcup_i y_j \beta_j s = 0$ i.e., $\bigcup_i [y_j, \beta_j] s = 0, \forall s \in S$. Hence, $\bigcup_i [y_j, \beta_j] = 0$. Since $\bigcup_i [x_i, \alpha_i] \neq \phi$ is arbitrary, every nonzero element in *L* has a right β -insulator. Similarly, if *S* is left strongly prime, then every non-zero element of *R*

has a left β -insulator. Thus, L is right strongly prime, and R is a left strongly prime Γ -semigroup.

Theorem 2.17: A Γ -semigroup S is weakly semiprime then S is strongly prime and only if its left operator semigroup L is right strongly prime and its right operator semigroup R is left strongly prime.

Proof: Suppose that *L* is a right strongly prime Γ -semigroup. In order to prove that *S* is a strongly prime Γ -semigroup, we shall prove that for every $\beta \in \Gamma$, every non-zero element in *S* has a right β -insulator. Let $x \neq 0 \in S$; $\beta \in \Gamma$. Since *S* is a left weakly semiprime Γ -semigroup, $[x, \beta] \neq 0$. Since *L* is right strongly prime, there exists a right insulator $M([x, \beta]) = \bigcup_{j=1}^{n} [y_{jk}, x_{jk}] / k = 1, 2, \dots, s \}$ for $[x, \beta]$. Then $Ann(\{[x, \beta]c/c \in M([x, \Gamma])\}) = \{0\}$. Therefore, for any $U_i[z_i, \delta_i] \in L, [x, \beta] \bigcup_{j=1}^{n} [y_{jk}, \beta_{jk}] \bigcup_i [z_1, \delta_i] = \{0\}$, for all $k = 1, 2, \dots, s$ implies that $\bigcup_i [z_1, \delta_i] = 0.$ (**) Consider $M'_{\beta} = \{y_{jk}\beta_{jk}x/j = 1, 2, \dots, n; k = 1, 2, \dots, s\}$. We now claim that M'_{β} is a β -insulator for *x*. It is enough to prove that for each. Let $y \in r_{\alpha}(\{x\beta c/c \in M'_{\beta}\}), \forall \alpha \in \Gamma$; then $(x\beta y_{jk}\beta_{jk}x)\alpha y = 0, \forall \alpha \in \Gamma$ and $k = 1, 2, \dots, s$. Therefore $[x\beta y_{jk}\beta_{jk}x\alpha y, \Gamma] = 0, \forall \alpha \in \Gamma$ add $k = 1, 2, \dots, s$. Hence $[x\beta y_{jk}, \beta_{jk}][x\alpha y, \Gamma] = 0, \forall \alpha \in \Gamma$ and $k = 1, 2, \dots, s$. Therefore $[x\beta y_{jk}\beta_{jk}x\alpha x + \beta_{jk}][x_{\alpha}x_{j}, \Gamma] = 0, \forall \alpha \in \Gamma$ and $k = 1, 2, \dots, s$. So that $[x, \beta] \bigcup_{j=1}^{n} [y_{jk}, \beta_{jk}][x_{\alpha}x_{j}, \Gamma] = 0, \forall \alpha \in \Gamma$ and $k = 1, 2, \dots, s$. So that $[x, \beta] \bigcup_{j=1}^{n} [y_{jk}, \beta_{jk}][x_{\alpha}x_{j}, \Gamma] = 0, \forall \alpha \in \Gamma$. Since *S* is faithful $L \setminus R$ bimodule, we have y=0. Since $x \neq 0 \in S$ is arbitrary, for every $\beta \in \Gamma$, every non-zero element in *S* has a right β -insulator. Hence *S* is a right strongly prime Γ -semigroup. Similarly, if *R* is a left strongly prime Γ -semigroup then *S* is a left strongly prime Γ -semigroup.

Proposition 2.18: If S is strongly prime Γ -semigroup, then S is weakly semiprime Γ -semigroup.

Proof: Suppose that S is strongly prime Γ -semigroup. We shall prove that S is a weakly semiprime Γ -semigroup. Let $x \neq 0 \in S$. It is enough to prove that $[x, \Gamma] \neq 0$ and $[\Gamma, x] \neq 0$. Suppose that $[x, \Gamma] = 0$. Since S is a strongly prime Γ -semigroup, for every $\beta \in \Gamma$ there exists a finite subset $M_{\beta}(x)$ such that for $b \in S$, $\{x\beta c\alpha b/c \in M_{\beta}(x)\} = 0, \forall \alpha \in \Gamma$ implies that b=0. Now $x\beta c\alpha x = [x, \beta]c\alpha x = 0c\alpha x = 0, \forall \alpha, \beta \in \Gamma$. Hence x=0, a contradiction. Thus, S is a weakly semiprime Γ -semigroup.

REFERENCES

- 1. Anjaneyulu A. Semigroups in which prime ideals are maximal. Semigroup Forum. 1981;22:151-8.
- 2. Aiyared I. Note on Bi-ideals in-semigroups. Int J Algebra. 2009;3(40):181-8.
- 3. Clifford AH, Preston GB. The algebraic theory of semigroups. Am Mathematical Soc. Provience. 1967.
- 4. Sen MK, Saha NK. On semigroups-I. Bulletin of Calcutta Mathematical Soc. 1986;78:180-6.
- 5. Sen MK, Saha NK. On-semigroups-II. Bulletin of Calcutta mathematical Soc. 1987;79:331-5.
- 6. Kyuno S. On prime-rings. Pacific J Math. 1978;75(1):185-90.