
[Type text] [Type text] [Type text] 

 
 
  

 
 

 
 
 

2014 

 

© Trade Science Inc. 
 

ISSN : 0974 - 7435 Volume 10 Issue 23 

BioTechnology 

An Indian Journal
FULL PAPER

BTAIJ, 10(23), 2014 [14406-14411]

Stability analysis of a worm propagation model with 
partial immunization 

 
Fangwei Wang1, Yong Yang2, Dongmei Zhao1, Yunkai Zhang3* 

1College of Information Technology, Hebei Normal University, Shijiazhuang, 
050024, (CHINA) 

2Network and Information Center, Yunnan University, Kunming, 650091, (CHINA)
3Department of Information Engineering, Shijiazhuang Institute of Railway 

Technology, Shijiazhuang, 050071, (CHINA) 
E-mail: zhyk@hebtu.edu.cn 

 
ABSTRACT 
 
Internet worm attacks the Internet infrastructure, reduces network security and causes
economic losses. In order to effectively defend against worms, this paper proposes a novel
epidemic SVEIR model with partial immunization. Using this SVEIR model, we obtain
the basic reproduction number for determining whether the worm dies out completely.
The global stability of worm-free equilibrium is proven using a Lyapunov function. By
the use of Hurwitz criterion, the local stability of the unique endemic equilibrium is
proven. The impact of different parameters of this model is studied. Simulation results
show that the number of susceptible and infected hosts is consistent with theoretical
analysis. The model provides a theoretical foundation for control and forecasting Internet
worms. 
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INTRODUCTION 
 
 Internet worms are malicious codes which can replicate themselves and propagate via Internet. With the ever 
increasing number of Internet applications and the emergence of new technologies, Internet worms have become a great 
threat to our work and daily life, caused tremendous economic losses. Especially, the advent of the Internet of things would 
make the threat increasingly serious. How to combat Internet worms effectively is an urgent issue confronted with defenders. 
Therefore, it is necessary to comprehend the long-term behaviour of worms and to propose effective strategies to defend 
against Internet worms. 
 Based on the similarity between a malicious worm and a biological virus, some mathematical models representing 
worm propagation were presented to depict and model the propagation of worms in the past decade years. In order to depict 
and defend against worms, researchers have presented some models [1-8] based on epidemiology. These models assume that 
exposed hosts can not infect other hosts. Actually, an infected host which is in latency can infect other hosts by means of 
some methods, e.g., vulnerability seeking. The previous models do not take this passive infectivity into consideration. 
Immunization is one of commonly used method for controlling the propagation process of worms. Some epidemic models 
with immunization have been proposed [9, 10]. However, these models all assumed that the vaccine hosts obtained the 
immunization fully. This is not consistent with the reality. In real networks, it is very difficult to obtain the immunization 
fully for the vaccine hosts. Thus, partial immunization should be a fungible and feasible method for eliminating worms, 
which have been used for predicting and controlling infectious diseases [11, 12]. This paper proposes a new worm attack model, 
referred to as SVEIR (susceptible-vaccinated-exposed-infectious-recovered) model, which is appropriate for measuring the 
effects of security countermeasures on worm propagation. Contrary to existing model, our model takes the partial 
immunization and two infection rates. Using the reproduction number, we derive global stabilities of the worm-free 
equilibrium and endemic equilibrium. Furthermore, simulation results show the effectiveness of our model. Finally, 
equilibrium points are confirmed by plots. 
 

MATHEMATICAL MODEL FORMULATION 
 
 The total host population N is partitioned into five groups and any host can potential be in any of these groups at any 
time t: the susceptible, vaccinated, exposed, infectious, recovered, with sizes denoted by S, V, E, I, R, respectively. The total 
number of population N at time t is given by )()()()()()( tRtItEtVtStN ++++= . The dynamical transfer of hosts is 
depicted in the following figure.  
 

 
 

Figure 1 : Schematic diagram for the flow of worms 
 
 Fig. 1 shows the five states and state transition in SVEIR. Based on the compartment model presented in Fig. 1, the 
SVEIR model having infectious force in the exposed, infected period and partial immunization is described by the following 
system of differential equations: 
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 where Π  is a constant recruitment of susceptible hosts. Let β  be the transmission rate of worm attack when 
susceptible hosts contact with infected ones. The positive parameter μ  is the rate of natural death, α  are non-negative 
constant and denote the rate of worm-caused death. The vaccinated hosts which contact infected ones before obtaining 
immunization have the infection probability with a transmission rate σβ  ( 10 ≤≤ σβ ). 0=σ  means that the vaccinated 
hosts obtain the full immunization, 1=σ  means that vaccine loses efficacy in work fully. Taking some real factors into 
account, we assume that the vaccinated hosts can obtain partial immunization, that is to say, 10 << σ . ε  is the transfer rates 
between the susceptible and the vaccinated. ω  is the rate at which exposed hosts become infectious, η  is the recovered rate 
of infected hosts. 
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 Since the state R does not appear explicitly in the first four equations in the system (1), the dynamics of (1) is the 
same as the following system: 
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 Summing the equations of the system (2), we obtain INtN αμ −−Π=)(' . 
 Therefore, the total population N may vary with time t. In the absence of disease, the total population size N(t) 
converges to the the equilibrium μ/Π . We thus study our system (2) in the following feasible region: 

}/:),,,{( 4 μΠ≤+++∈=Ω + IEVSRIEVS , which is a positively invariant set of the model (2). We next consider the 
dynamic behaviour of the model (2) onΩ . 

 Firstly, we obtain the basic reproduction number of the model (2) by the method of next generation matrix [13]. It is 
easy to see that the model (2) always has a worm-free equilibrium, ( )0,0)),(/(),/(0 εμμεεμ +Π+Π=P . 

 Let ),,,( SVIEx = , then the model (2) can be written as 
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 Differentiating )(xF and )(xV  with respect to SVIE ,,, and evaluating at the worm-free equilibrium
( )0,0)),(/(),/(0 εμμεεμ +Π+Π=P , respectively, we have 
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 Thus, the spectral radius of the next generation matrix 1−FV  can be found as, 
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 According to Theorem 2 in [13], the basic reproduction number of model (2) is 
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 The endemic equilibrium ),,,( ***** IEVSP  of the model (2) is determined by the following equations 
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 By the direct computation, we obtain )/( *** εμββ +++Π= IES , )/( *** μσβε += ISV , ωηαμ /)( ** IE ++= , 
αμ /)(* NI −Π= . Once these constant parameters are given, *S , *V , *E , *I are all determined. Thus, ),,,( ***** IEVSP  

is the unique endemic equilibrium of the model (2). 
 

THE GLOBAL STABILITY OF THE WORM-FREE EQUILIBIRUM 
 

 It is easily obtained that the model has a worm-free equilibrium given by ( )0,0)),(/(),/(0 εμμεεμ +Π+Π=P . 
 Lemma 1: When 10 <R , the worm-free equilibrium 0P  is locally asymptotically stable. When 10 >R , the worm-

free equilibrium 0P  is an unstable saddle point. 
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 Proof: The Jacobian matrices of the model (2) at 0P  is 
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 It is easily obtained that )( 0PJ has two negative eigenvalues μλ −=1 , and )(2 εμλ +−= , the other eigenvalues of 
)( 0PJ  are determined by the following equation 
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 When 10 <R , then ,0)()())(( 000 >+−++−+++ VSS σββωηαμβωμηαμ two roots of Eq, (5) are negative. 

The four-dimensional model to be asymptotically stable is that 0<iλ , for 4,3,2,1=i , which meets the sufficient condition 
of the stability theory [14]. When 10 >R , ,0)()())(( 000 <+−++−+++ VSS σββωηαμβωμηαμ  which means that )( 0PJ  
has a positive root and a negative root. Therefore, the worm-free equilibrium 0P  is an unstable saddle point. This completes 
the proof. 
 Lemma 2: When 10 ≤R , the worm-free equilibrium 0P  is globally asymptotically stable. 

 Proof: Consider the following Lyapunov function 
 IEL )( ωμω ++= . 
 Its derivative along the solutions to the model (2) is 
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 Furthermore, 0'=L  if and only if 0=I  or 10 =R . Thus, the largest compact invariant set in }0'|),,,{( =LIEVS  is 
the singleton }{ 0P . When 10 ≤R , the global stability of 0P follows from LaSalle's invariance principle [15]. LaSalle's 
invariance principle [15] implies that 0P  is globally asymptotically stable in Ω . When 10 >R , it follows from the fact 0'>L  
if 0>I . This completes the proof. 
 

THE LOCAL STABILITY OF THE ENDEMIC EQUILIBRIUM 
 

 Lemma 3: When 10 >R , the endemic equilibrium *P  is locally asymptotically stable. 

 Proof: The Jacobian matrix of the model (2) at ),,,( ***** IEVSP  is 
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 Therefore, the corresponding characteristic equation can be denoted as 
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 By a direct calculation, we obtain that 

011 >= CH , 03212 >−= CCCH , 04
2
1233 >−= CCHCH , .0344 >= HCH  

 According to the theorem of Routh-Hurwitz, it follows that all the roots of the Eq. (7) have negative real parts. 
Therefore, the endemic equilibrium *P is locally asymptotically stable. This completes the proof. 
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NUMERICAL SIMULATIONS 
 
 In this experiment, we choose the Conficker as basic behavior of a worm. The Conficker infected 1,400,000 hosts in 
2009 [2], thus we select 1,400,000 hosts as the population size. According to the real conditions of the Conficker worm, its 
infection rate is 5107.1 −×=β  [2]. At the beginning, the number of susceptible, vaccinated, exposed, infectious, recovered 
hosts are 998,399,1)0( =S , 1)0( =V , 0)0( =E , 1)0( =I , 0)0( =R , respectively. Other parameters in these simulations are 
given as follows: 140=Π , 0003.0=μ , 2.0=ω , 4.0=σ , 08.0=η , 1.0=ε .  
 Using the parameters above, we can obtain 17548.00 <=R . The worm will gradually disappear according to 
Lemma 2. Fig. 2 illustrates the number of susceptible and infected hosts when 0R  is 0.7548. From Fig. 2, we can clearly see 
that the tendency of the worm propagation is depressive, which is consistent with Lemma 2. Finally, the whole population, in 
the long term, is in a recovered state. In order to effectively defend against such worms, we must adopt feasible methods to 
adjust some related parameters, and then guarantee the basic reproduction number 10 <R . 
 

 
 

Figure 2 : Globally stable worm-free equilibrium 
 
 In the second experiment, when 7.0=ω , we can obtain 13541.40 >=R . Other parameters do not vary. We can see 
the results in Fig. 3. As can be seen from Fig. 3, the number of susceptible and infected hosts eventually become positive 
values between 0 and μ/Π . )(tS , )(tI  all approach their steady state, and the worm persists. This is fully consistent with 
the conclusions of Lemma 3. Furthermore, we can know that the unique endemic equilibrium is locally asymptotically 
stable. 
 With other parameters remaining the same, the partial immunization rate σ  is set to different values each time in 
order to state that the number of infected hosts is affected by every different value of the partial immunization rate. Fig. 4 
shows the effect of changing the partial immunization rate (which varies between 0.1 and 0.7) on worm propagations. From 
Fig. 4, we can see that a smaller partial immunization rate results in diminishing the worm propagation speed, more 
importantly, lowering the total number of infected hosts, and prolonging the time of reaching their propagation peaks. 
However, in real-world networks, it is very difficult to implement full immunization. Therefore, in order to eliminate worms 
as soon as possible, we require the support from all circles of society, which can guarantee to reach a smaller partial 
immunization rate σ . 
 

  
 

Figure 3 : Locally stable equilibrium equilibrium Figure 4: Effect of partial immunization rate 
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CONCLUSIONS 
 
 This paper presented a mathematical model describing the dynamical behaviour of an SVEIR epidemic model with 
partial immunization for Internet worms. Firstly, by the method of next generation matrix, we give the basic reproduction 
number determining whether the worm extinguishes. Secondly, the global stability of worm-free equilibrium and the local 
stability of endemic equilibrium have proved. When the basic reproduction number is less than and equal to one, the 
proposed model has only a worm-free equilibrium which is globally stable, it implies the worm dies out eventually; when the 
basic reproduction number is larger than one, our model has unique endemic equilibrium which is globally stable, it implies 
that the worm persists in the whole host population and tends to a steady state. Finally, some numerical examples are given to 
verify our conclusions. Our future work will verify the model by the use of NS2 (Network Simulation version 2) and expand 
this model proposed in this paper to scale-free networks. 
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