

SPECTROSCOIC INVESTIGATIONS OF ANILINIUM NITRATE

C. YOHANNAN PANICKER^{*}, HEMA TRESA VARGHESE^a, P. E. EAPEN^b, K. RAJU^c, SUBARNA GANGULI^d, FATHIMA BEEGUM and Y. SHEENA MARY^e

Department of Physics, TKM College of Arts and Science, KOLLAM (Kerala) INDIA ^aDepartment of Physics, Fatima Mata National College, KOLLAM (Kerala) INDIA ^bDepartment of Physics, St. Gregorios College, KOTTARAKKARA (Kerala) INDIA ^cDepartment of Physics, University College, TRIVANDRUM (Kerala) INDIA ^dCalcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Uluberia, HOWRAH - 711316 (West Bengal) INDIA ^cThushara, Neethinagar-64, Pattathanam, KOLLAM (Kerala) INDIA

ABSTRACT

The vibrational frequencies of anilinium nitrate were calculated using Gaussian03 software package and the fundamental modes are assigned. The calculated frequencies are in agreement with the reported experimental values. The calculated geometrical parameters are compared with the geometrical parameters of similar derivatives. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non linear optics.

Keywords: Anilinium nitrate, HF, DFT calculations, Hyperpolarizability

INTRODUCTION

Aniline and its derivatives are used in several pharmaceutical and industrial processes as starting materials because they can serve as precursors in the synthesis of dyes and sensitizer molecules, pesticides and antioxidants^{1,2}. They are used in electro optical industry, for the synthesis of technological materials with nonlinear optical responses³. The structures and vibrational spectra of aniline and substituted aniline complexes are being studied extensively, since elucidation of their molecular properties as well as nature of reaction mechanism is of utmost importance. The structural, electronic and vibrational parameters of aniline molecule change with inclusion of substituent group because it leads to

^{*}Author for correspondence; E-mail: cyphyp@rediffmail.com

the variation of charge distribution in the molecule. The structure and normal vibration of aniline and its derivatives were reported by Tzeng et al.^{4,5}. The IR and Raman studies of anilinium nitrate were reported by Marchewka and Pietraszko⁶. There are many examples of nitrates exhibiting structural phase transitions⁶. In the present study, the vibrational frequencies of the title compound are theoretically calculated and compared with reported data.

Computational details

Calculations of the title compound were carried out with Gaussian03 program⁸ using the B3LYP/6-31G* and HF/6-31G* levels of theory to predict the molecular structure and wavenumbers. Molecular geometry was fully optimized by Berny's optimization algorithm using redundant internal coordinates. Harmonic vibrational wavenumbers were calculated using the analytic second derivatives to confirm the convergence to minimum on the potential surface. The wavenumber values computed theoretically contain known systematic errors due to the negligence of electron correlation⁹. We therefore, have used the scaling factor value of 0.8929 for HF/6-31G* basis set and 0.9613 for B3LYP/6-31G* basis set. The absence of imaginary wavenumber on the calculated vibrational spectrum confirms that the structure deduced corresponds to minimum energy.

RESULTS AND DISCUSSION

The calculated (scaled) wavenumbers, IR and Raman bands and their assignments are given in Table 1. According to Roeges¹⁰, NH₃ stretching vibrations are expected in the region 2910-3200 cm⁻¹. For anilinium nitrate, the DFT calculations give 3352, 3319, 3248 cm⁻¹ as stretching modes of NH₃ group, where as the reported values⁶ are 3187, 3176 cm⁻¹. The DFT calculations give the in-plane deformations of the NH₃ group at 1642, 1615 and 1487. The corresponding values are 1636, 1615, 1499 cm⁻¹ in the IR spectrum and 1635, 1619 cm⁻¹ in the Raman spectrum⁶. These modes are expected in the region¹⁰ 1635-1480 cm⁻¹. Although the CN stretch and the NH₃ rock can couple, the CN stretching vibration¹⁰ is unambiguously assigned in the neighbourhood of 1050 cm⁻¹. The NH₃ rocking mode is expected in the range¹⁰ 1005-1200 cm⁻¹. The DFT calculations give 1036 and 975 cm⁻¹ as rocking modes of NH₃. The bands at 1038, 995 cm⁻¹ in IR spectrum and at 1038, 993 cm⁻¹ in Raman spectrum are assigned as these modes by Marchewka and Pietraszko⁶. The band 1073 cm⁻¹ is assigned as CN stretching mode. The δ CCN mode is coupled with the twisting and skeletal-deformation modes of NH₃, which are found to be respectively in the ranges¹⁰ 425-535 cm⁻¹ and 310-370 cm⁻¹. The NH₃ torsional modes lie in the region¹⁰ 140-240 cm⁻¹ and bands at 109 and 6 cm^{-1} are assigned as these modes theoretically.

$v_{(HF)} cm^{-1}$	v _(DFT) cm ⁻¹	$v_{(IR)} cm^{-1}$	v _(Raman) cm ⁻¹	Assignments
3330	3352			$\upsilon_{as}NH_3$
3315	3319.			$\upsilon_{as} NH_3$
3227	3248	3187	3176	$\upsilon_s NH_3$
3054	3109	3108	3102	υCH
3033	3086	3085	3085	υCH
2989	3049		3064	υCH
2986	3048	3026	3025	υCH
2982	2831	2970	2985	υCH
1659	1642	1636	1635	$\delta_{as}NH_3$
1649	1615	1615	1619	$\delta_{as} NH_3$
1613	1597	1603	1605	υPh
1581	1558	1553	1552	υPh
1526	1487	1499		$\delta_s NH_3$
1481	1466	1468		υPh
1477	1450	1457		υPh
1353	1442	1450		υPh
1340	1356	1340	1344	$\upsilon_{as}NO_3$
1263	1333			υPh
1241	1310	1306		$\upsilon_{as}NO_3$
1182	1190	1204	1205	δСН
1170	1142	1163	1165	δСН
1150	1098	1101		δСН
1106	1073			υCN
1086	1069	1059		δСН

 Table 1: Calculated vibrational wavenumbers and band assignments

Cont...

$v_{(HF)} cm^{-1}$	v _(DFT) cm ⁻¹	$v_{(IR)} cm^{-1}$	v _(Raman) cm ⁻¹	Assignments
1083	1036	1038	1038	ρNH ₃
1055	1026	1031	1029	δСН
1015	1003	1005	1004	Ring breath
999	975	995	993	ρNH_3
987	974	971		$\upsilon_s NO_3$
984	958	963		γСН
978	882	890		γСН
861	795	822	838	γСН
794	792	795	794	γСН
774	739	749	750	δNO ₃
733	727	725	722	γСН
690	689	691	690	γPh
660	680			$\delta Ph(X) \delta NO_3$
650	654	620		ωNO_3
624	598	617	617	δPh
508	497	527	529	δPh(X)
454	429			γPh (X)
417	400	402	401	γPh
338	327			$\tau \mathrm{NH}_3$
223	204	274	273	δCX(X)
125	156	179	184	γCX(X)
86	112	147	109	tNO ₃
63	77	120	92	tPh
36	57	93		tPh
30	24			tNH ₃

Cont...

$v_{(HF)} cm^{-1}$	$v_{(DFT)} cm^{-1}$	$v_{(IR)} cm^{-1}$	v _(Raman) cm ⁻¹	Assignments
27	16			tNO ₃

υ-stretching; δ-in-plane deformation; γ-out-of-plane deformation; τ-twisting; rocking; ω -wagging; X-substituent sensitive; Ph-Phenyl; t-torsion subscripts: as – asymmetric, s- symmetric; experimental frequencies are taken from reference [6].

The DFT calculations give the NO₃ stretching vibrations at 1356, 1310 and 974 cm⁻¹. The bands observed at 1340, 1306, 971 cm⁻¹ in the IR spectrum and at 1344 cm⁻¹ in the Raman spectrum are assigned as NO₃ stretching vibrations. The deformation bands of NO₃ are observed at 749, 620 cm⁻¹ in the IR spectrum and at 750 cm⁻¹ in the Raman spectrum. Correspondingly, the DFT calculations give these modes at 739, 680 and 654 cm⁻¹. Brooker and Irish¹¹ reported stretching vibrations of NO₃ in the range 1045-1071 cm⁻¹ (Raman), 1045-1051 cm⁻¹ in IR and in the range 787-838 cm⁻¹ in IR.

The existence of one or more aromatic rings in a structure is normally readily determined from the C H and C=C-C ring related vibrations. The CH stretching occurs above 3000 cm⁻¹ and is typically exhibited as a multiplicity of weak to moderate bands compared with aliphatic C-H stretch¹². In the present case, the DFT calculations predict the vCH modes in the range 3109-2831 cm⁻¹. Experimentally observed values are in the range 3108-2970 cm⁻¹. The lowering of CH stretching mode is due to the interaction between NO₃ group and the phenyl ring.

The benzene ring possesses six ring stretching vibrations of which the four with the highest wavenumbers occurring near 1600, 1580, 1490 and 1440 cm⁻¹ are good group vibrations¹⁰. With heavy substituents, the bands tend to shift to somewhat lower wavenumbers and the greater are the number of substituents on the ring, the broader are the absorption regions¹⁰. In the case of C=O substitution, the band near 1490 cm⁻¹ can be very weak¹⁰. The fifth ring stretching vibration is active near 1315 ± 65 cm⁻¹, a region that overlaps strongly with that of the CH in-plane deformation¹⁰. The sixth ring stretching vibration, the ring breathing mode appears as a weak band near 1000 cm⁻¹ in mono-, 1,3-di and 1,3,5-trisubstituent sensitive and difficult to be distinguished from other modes. For the title compound, the ring breathing mode appears at 1005 cm⁻¹ in the IR spectrum, 1004 cm⁻¹ in the Raman spectrum and at 1003 cm⁻¹ theoretically. The in-plane and out-of-plane CH deformations of the phenyl ring are expected in the regions 1320-1040 cm⁻¹ and 990-730 cm⁻¹, respectively¹⁰. All these bands are identified and assigned (Table 1).

Holden and Dickinson¹³ reported N-O bond length in the range 1.23-127Å and O-N-O angle as 120°. Lucas¹⁴ reported N-O bond lengths in the range 1.21 -1.29 Å and ONO angle in the range 116-128°. For the title compound, the NO bond lengths are in the range 1.2369-1.2663 Å and ONO angles in the range 119.0 – 120.6°. Marchewka and Pietraszko⁶ reported NH bond lengths in the range 0.9129-0.9451 Å, NO bond lengths in the range 1.2295-1.2670 Å and CNH angles in the range 110.4-112.3°, HNH angles in the range 106.6-108.6° and ONO angles in the range 118.5-121.8°. The DFT calculations give CNH angles in the range 110.4-110.8° and HNH angles in the range 108.2-108.4° for the title compound. In the present case, the NH bond lengths are in the range 1.008-1.0087 Å. For the title compound, the C₆-N₁₂ bond length is 1.4988 Å whereas the reported value is 1.4662 Å⁶. The DFT calculations give shortening of angles C₅-C₆-N₁₂ by 1.2°, C₁-C₆-N₁₂ by 2.1° and increase of angle C₁-C₆-C₅ by 3.3° at C₆ position and this asymmetry reveals the interaction between NH₃ group and the phenyl ring.

Analysis of organic molecules having conjugated π -electron systems and large hyperpolarizability using infrared and Raman spectroscopy has evolved as a subject of research¹⁵. The potential application of the title compound in the field of non linear optics demands the investigation of its structural and bonding features contributing to the hyperpolarizability enhancement, by analyzing the vibrational modes using the IR and Raman spectrum. The calculated first hyperpolarizability of the title compound is 110.98 × 10⁻³⁰ esu, which is comparable with the reported values of similar derivatives¹⁶. We conclude that the title compound is an attractive object for future studies of non linear optical properties.

REFERENCES

- 1. J. Whysner, L. Vera and G. M. Williams, Pharmacol. Ther., 71, 107 (1996).
- 2. P. Hohenberg and W. Kohn, Phys. Rev., B 136, 864 (1964).
- 3. A. Altun, K. Golsuk and M. Kumru, J. Mol. Struct. Theochem. 625, 17 (2003).
- W. B. Tzeng, K. Narayanan, K. C. Shieh and C. C. Tung, J. Mol. Struct. Theochem., 428, 231 (1998).
- 5. W. B. Tzeng and K. Narayanan, J. Mol. Struct. Theochem., 434, 247 (1998)..
- 6. M. K. Marchewka and A. Pietraszko, J. Phys. Chem. Solids, 66, 1039 (2005).
- 7. M. J. Frisch, et al. Gaussian03, Revision C. 02, Gaussain Inc., Wallingford CT (2004).
- 8. J. B. Foresman and E. Frisch, in E. Frisch, (Ed.), Exploring Chemistry with Electronic Structure Methods, A Guide to Using Gaussian, Gaussian, Pittsburg PA (1996).
- 9. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
- 10. M. H. Brooker and D. E. Irish, Can. J. Chem., 48, 1198 (1970).
- 11. J. Coates and R. A. Meyers (Eds.), Interpretation of Infrared Spectra, A Practical Approach, John Wiley and Sons, Chichester (2000).
- 12. J. R. Holden and C. W. Dickinson, J. Phys. Chem., 79, 249 (1975).
- 13. B. W. Lucas, Acta Cryst., C39, 1861 (1983).
- M. Tommasini, C. Castiglioni, M. Del Zoppo and G. Zerbi, J. Mol. Struct., 480, 179 (1999).
- 15. H. T. Varghese, C. Y. Panicker, V. S. Madhavan, S. Mathew, J. Vinsova and C. Van Alsenoy, J. Raman Spectrosc. DOI:10.1002/jrs. 2265.

Accepted : 28.10.2009