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Introduction  

Space system identification applied is often cited to comprise statistical methods to build math models (equations) from 

given-data, while several useful algorithms are instead calculus-based. The fast Fourier transform [1,2] is ubiquitous for 

identifying natural frequencies, which are used for a certain class of assumed system models. Which system model should 

engineers choose? How high must the order of the assumed model be? Goodwin [3] assumed a nonlinear system model and 

used minimum-variance to estimate system parameters. In particular, Goodwin identified the importance of incorporating 

white noise (zero-mean with unity covariance) and colored noise. Levin [4] illustrated optimal estimation for impulse 

response in the presence of noise. Nahi and Wallis [5] illustrated the important applications of system identification to 

automatic control. Friedlander [6] demonstrated the utility of system identification for adaptive signal processing and Astrom 

and Wittenmark described the follow-on techniques in their textbook on adaptive control [7]. Slotine [8,9] reveals adaptive 
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control techniques that utilize system math models in their adaptive strategies can often make acceptable system identifiers. 

Fossen [10] subsequently improved Slotine’s technique with mathematical simplifying problem formulation and Sands [11], 

[12-17] and Kim [12] developed further improvements to the algorithm based on Fossen’s problem formulation followed by 

Nakatani [18,19] and Heidlauf-Cooper [20,21], but alas these improvements were not revealed in time for publication in 

Slotine’s text. Troublingly, Wie [22] elaborated singularities that exists in the control actuation that can exacerbate or defeat 

the control design as articulated [23-27] and solved by Agrawal [28]. Lastly, Sands [29,30] illustrated ground experimental 

procedures to perform system identification for initialization of on-orbit methods. Informed by these recent developments, 

the purpose of this research is to aid (by direct comparison) researchers ascertain which technique should be used for system 

identification with an underlying motivation of system control.  

Materials and Methods 

Several methods will be directly compared after a brief explanatory setup for each technique. Transfer functions models are 

very often a first-stop for mathematical modeling using auto-regressive, moving average assumptions and this article will 

begin with this technique. Discrete time-shift operators will be introduced that permits the setup methodology to be 

generalizable to any desired time-indexing for discrete data points. The method is compared to transverse filters using the 

finite impulse response assumptions and then both techniques are iterated in computer loops to reveal the desired and 

necessary model-order for a given level of accuracy using the same set of “truth data” for each technique. Next, several 

modern techniques are implemented on identical data sets and results are plotted on the same graph for easy visual 

comparison. 

Beginning with a truth model (equation 1) to generate noisy outputs measurement time histories, the suitability of various 

models is investigated to accurately represent the truth data. The goal is to identify the best mathematical model to describe 

the system that generated the truth data. Next, comparison of various algorithms will be made to evaluate their effectiveness 

identifying this system when given only the truth data, without any presumed knowledge of the model or its structure, 
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Autoregressive, moving-average model (ARMA), aka “transfer function models” 

Using the identical noisy measurement time-history generated by equation 1, polynomial transfer functions with unknown 

coefficients are used in a least squares algorithm to find the best estimate of the polynomial coefficients. The transfer 

functions of the system are of the form [7]:  

 

ˆ( ) ( ) ( ) ( )

Autoregressive Moving Average

A q y t B q u t      (2) 

1

1

1 2

1 2

( ) ...

( ) ...

n n

n

m m

m

A q q a q a

B q b q b q b



 

   

   
      (3) 

n is the order of the denominator polynomial [A] and m is the order of the numerator [B]. q
n
 implies that time is forward 

shifted n-times. Note the [A] and [B] matrices are written in terms of forward shift operator ‘q’. Multiply to yield equation 4. 

Next multiply through by q
-n

 to express in terms of old data (i.e. you want to avoid an expression that is dependent upon 
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forward shifted…future values) resulting in equation 5 which produces equation 6 implementing the time shift. Multiplying-

out to get equation 7, solve for ŷ  producing equation 8.
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Implement time shift operations to produce equation 9, e.g. 1 2( 1),  ( 2),  ( )...nq t q t q t n       

1 2 1 2( ) ( 1) ( 2) ... ( ) ( 1) ( 2) ... ( )n my t a y t a y t a y t n b u t m n b u t m n b u t n                   (9)

Notice a slightly different equivalent development of the form of equation 10 may be multiplied by q
-n

 shifts time (t-n) 

producing equation 11.  
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Thus, the degree of the denominator polynomial becomes equation 12, solving for y (t) yields equation 13. The truth model is 

equation 14 generating the input (random)/output data displayed below in FIG. 1. The next task is to estimate the order of the 

model by comparing mean square errors at model coefficient estimation.  
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FIG. 1. Model 1 input (random noise) and output. 
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FIG. 2 depicts the system input and output. Notice the input control signals are random numbers providing sufficient 

persistent excitation to estimate all the parameters in the model. 

( ) ( 1)Ty t t   where  1 2 0 1
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In matrix form the truth model (Autoregressive Moving-Average, a.k.a. ARMA) becomes equation 15 and equation 16, thus: 
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Transverse (FIR) filter 

Estimate the model size using a Moving-Average only model first (Transverse or FIR Filter), where we neglect previous 

outputs (yi (t-k)) and use the form of standard least squares. The next step is to form the ( 1)T t  matrices for each time

step t per equation 17 where equation 18 minimizes the cost function (equation 19) with a solution in equation 20. 
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Iterative results are next displaying mean square error (MSE) for various model orders n
*
=n+m’, where n=number of outputs 

and m’=number of inputs in the assumed model (FIG. 1). These results indicate that the mean square error reduces 

logarithmically as model order increases. Most benefit is gained by the 3-4 order input in the case of transverse (FIR) filter 

containing inputs only. Certainly nothing beyond 5 seems necessary.  
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FIG. 2. Mean square error (fit) for various, increasing system order. 

Autoregressive, moving-average model with past inputs 

Identical Least Squares analysis was performed using an assumed model that includes past outputs resulting in slightly 

modified  and  matrices, equations 21.  
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For transfer function models containing inputs and outputs, notice the lowest model order to roughly achieve the minimum 

on the order of ~10
-20

 is n*=n+m’=3 inputs+3 outputs. Indeed, it appears that we could overstate the model order and achieve 

slightly improved mean square errors, but the amount of improvement is not worth the risk of overestimating the model 

order. In this instance, we know that this is the correct order of the model that generated the truth output signal, so we know 

that we have made a good judgment. Analysis in sections 3.4 and 3.5 of this research article uses 3 y (t) and 3 u (t) terms 

(FIG. 3). 

FIG. 3. Mean square error (fit) for various, decreasing system order. 
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Truth model with uncorrelated output noise 

Next, seek to deal with a model that articulates uncorrelated noise seeking the best estimation technique for an assumed 

model in equation 22. 

'

9 3 1 2 1 1
( ) ( 1) ( 2) ( 3) 3 ( 1) ( 2) ( 3) ( )
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y t y t y t y t u t u t u t t                    (22) 

Equation 22 is the new truth model with the addition of an uncorrelated output noise term (t)=N (0,1). The truth model is 

used to generate time history data for 1000 time samples, then recursive least squares is used to estimate the parameters of the 

assumed model order from section 3.3 (n*=n+m’=3 inputs+3 outputs). Recursive least squares (RLS) with exponential 

forgetting (RLS-EF) was also implemented for comparison. Typically, RLS-EF is useful if you believe that you’re plant 

changes with time. Consider a spacecraft mass model changing as propellant is used during orbit. After considerable orbital 

maneuvering, it would useful to trigger a reset in the RLS algorithm to determine the new best fit model. The system 

equation used here does not have model changes, but was implemented nonetheless to evaluate the algorithms’ effectiveness. 

RLS-EF forgets data as it gets older and older. Without plant changes, intuition says that RLS-EF will not perform as well as 

RLS. This intuition is confirmed by the following results. EF=0.9 and EF=0.99 (not depicted) were analyzed with inferior 

performance compared to the other algorithms. EF=0.99 did show marginal improvement over the case of EF=0.9, but not 

good enough to compare with the other algorithms (FIG. 4). 

FIG. 4. Coefficient estimation comparison with uncorrelated output noise in truth data with EF=0.9. 
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FIG. 5. Coefficient estimation error comparison with uncorrelated output noise in truth data with EF=0.9. 

Notice the error plots in FIG. 3 and FIG. 4, the difference between real coefficients and estimated coefficients reveal our 

estimate accuracy increases as time progresses. Notice the RLS-EF fluctuates a lot, while the RLS settles to near-zero 

estimation errors quickly. Consider typical sensors sampling at ~ 40 Hz where 1000 samples are taken in 25 seconds. RLS 

works pretty quickly on the order of decimal-seconds to rapidly approach a small error value. 

Truth model with correlated output noise 

Now correlated noise term are considered and RLS with be compared to extended least squares (ELS) and ELS with 

Posterior Residuals (ELS-PR). Equation 23 is the new truth model (notice the addition of a correlated output noise terms per 

equation 22).  
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Results and Discussion 

Using the exact same time history data y (t), coefficient estimation was performed using extended least squares (ELS). ELS 

adds the noise terms to the assumed model and attempts to estimate the noise coefficients modifying the least squares 

variables per equation 25. Lastly, using the exact same time history data y (t), coefficient estimation was performed using 

extended least squares with Posterior Residuals (ELS-PR).  In the ELS-PR algorithm, we calculate an error difference of the 

output of our best-estimate model and the actual output at that time. Then we declare in the algorithm that all of this error 

difference is the (t) for that time sample. 

Notice FIG. 5-9 below that ELS-PR is clearly superior. Notice that RLS does okay in the beginning, but is diverging as time 

progresses. ELS does better than RLS, but still is not handling the correlated noise very well (Recall the uncorrelated error 

assumption in the Least Squares method). ELS-PR is the best method having the smallest error and generally continuing to 

converge as time progresses.  



www.tsijournals.com | December-2017 

8 

It is particularly interesting to note in FIG. 8 that the ELS-PR algorithm estimates the errors themselves very poorly, but still 

performs in a superior manner estimating the actual plant coefficients. Even poor estimates of the errors help improve the 

estimates of the plant parameters (the things we really care about).  

Finally, notice in FIG. 9 how much better ELS-PR performs below where the algorithm has been allowed to run for 10,000 

time samples. While all 3 methods do a very good job estimating the first control u (t-1) coefficient, only ELS-PR performs 

well across-the-board. Notice that the other 2 algorithms converge well, but to many incorrect values (displayed by the steady 

state errors). 

FIG. 6. Plant coefficient estimation comparison. 

FIG. 7. Plant coefficient estimation error comparison. 
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FIG. 8. Error coefficient estimation comparison. 

FIG. 9. Error coefficient estimation comparison for long run-time. 

Conclusion 

This article developed and tested several algorithms used for space system identification and presented direct comparisons of 

the algorithms on single plots to quickly reveal relative strengths of each approach. Batch least squares was used to reveal 
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that auto-regressive, moving-average (aka transfer functions) filters was superior to finite impulse response (aka transverse) 

filters at revealing the order of a data set. Next recursive least squares was compared with and without exponential forgetting. 

Forgetting is useful when the plant equation has a time-varying property, but for non-time varying systems the use of 

exponential forgetting degrades estimation performance significantly, so minimal forgetting was seen as a wise choice. With 

that preface, recursive least squares (with and without exponential forgetting) was compared to extended least squares (with 

and without posterior residuals). Extended least squares performed better than recursive least squares and using posterior 

residuals with extended least squares proved to be the best choice. Both uncorrelated and correlated noise was investigated. 

Peculiarly, the extended least squares algorithms poorly estimated the noise coefficients themselves, but inclusion of the error 

terms for noise in the system model improved estimation of the model equation parameters themselves. 
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