

Solid-Phase Extraction (SPE): Principles, Techniques, and Applications

Qiang Zhao*

Department of Applied Chemical Analysis, Peking University, China

*Corresponding author: Qiang Zhao, Department of Applied Chemical Analysis, Peking University, China;

E-mail: qiang.zhao@peking-chem.cn

Received: December 04, 2024; Accepted: December 18, 2024; Published: December 27, 2024

Abstract

Solid-phase extraction (SPE) is a widely used sample preparation technique in analytical chemistry that enables the isolation, purification, and concentration of target analytes from complex matrices. By utilizing a solid sorbent to selectively retain analytes while removing unwanted components, SPE improves the sensitivity, accuracy, and reproducibility of subsequent analyses. SPE has become indispensable in environmental monitoring, pharmaceutical research, food safety, and clinical diagnostics. This article provides an overview of the principles, operational mechanisms, and diverse applications of SPE in modern analytical workflows.

Keywords: *Solid-phase extraction, SPE, sample preparation, sorbent, analyte isolation, analytical chemistry, environmental analysis, pharmaceuticals*

Introduction

Solid-phase extraction (SPE) is a powerful and versatile sample preparation method designed to isolate specific analytes from complex matrices such as biological fluids, environmental samples, or industrial products. The technique relies on the interaction between the analyte and a solid sorbent material packed in a cartridge, column, or disk. The process typically involves conditioning the sorbent, loading the sample, washing to remove impurities, and eluting the retained analyte using an appropriate solvent. By selectively binding the target compounds, SPE enhances analyte concentration, removes interfering substances, and provides cleaner samples for downstream analytical techniques such as chromatography, spectroscopy, or mass spectrometry.

SPE sorbents are designed to exploit different physicochemical interactions, including adsorption, ion exchange, reverse-phase interactions, and affinity binding. Common sorbents include silica-based materials, polymeric resins, C18-bonded phases, ion-exchange resins, and molecularly imprinted polymers, each chosen according to the chemical properties of the analyte and the matrix. The choice of sorbent, sample loading conditions, washing solvents, and elution strategies critically influence the

efficiency, selectivity, and recovery of the analyte, making method optimization essential for high-quality results.

The advantages of SPE over traditional sample preparation methods, such as liquid-liquid extraction, include reduced solvent consumption, faster processing times, higher reproducibility, and improved selectivity. SPE is particularly effective for trace analysis, where analytes are present in very low concentrations, and matrix interferences must be minimized. Additionally, SPE is compatible with automation, allowing high-throughput sample preparation in modern laboratories, reducing manual labor and minimizing variability.

SPE has extensive applications across multiple fields. In environmental analysis, SPE is employed to isolate pesticides, heavy metals, and organic pollutants from water, soil, and air samples. In pharmaceutical and biomedical research, it is used for drug monitoring, therapeutic drug analysis, metabolite profiling, and biofluid sample preparation. Food and beverage analysis utilizes SPE for detecting contaminants, additives, and toxins, ensuring compliance with safety standards. Clinical diagnostics relies on SPE for preparing blood, urine, and plasma samples for accurate and sensitive biomarker detection. Emerging trends in SPE involve the integration of micro- and nano-SPE formats, online SPE coupled with analytical instruments, and the development of novel sorbents with enhanced selectivity, capacity, and chemical stability.

The efficiency and versatility of SPE make it an essential tool for modern analytical workflows. By enabling the selective extraction and preconcentration of target analytes, SPE enhances the reliability and sensitivity of subsequent analytical techniques, supports regulatory compliance, and accelerates research and development across diverse scientific domains.

Conclusion

Solid-phase extraction (SPE) is a vital sample preparation technique that provides selective isolation, purification, and preconcentration of analytes from complex matrices. By improving sensitivity, accuracy, and reproducibility, SPE supports a wide range of applications in environmental analysis, pharmaceuticals, food safety, and clinical diagnostics. Advances in sorbent materials, automation, and online integration continue to expand the efficiency and applicability of SPE, making it a cornerstone of modern analytical chemistry and a critical tool for reliable and high-quality data generation.

REFERENCES

1. Ötles S, Kartal C. Solid-Phase Extraction (SPE): Principles and applications in food samples. *Acta Scientiarum Polonorum Technologia Alimentaria*. 2016 Mar 30;15(1):5-15.
2. Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. *Critical Reviews in Analytical Chemistry*. 2012 Jul 1;42(3):198-213.
3. Fritz JS, Dumont PJ, Schmidt LW. Methods and materials for solid-phase extraction. *Journal of Chromatography A*. 1995 Feb 3;691(1-2):133-40.
4. Poole CF. Principles and practice of solid-phase extraction. InComprehensive analytical chemistry 2002 Jan 1 (Vol. 37, pp. 341-387). Elsevier.

Poole CF. Principles and practice of solid-phase extraction. InComprehensive analytical chemistry 2002 Jan 1 (Vol. 37, pp. 341-387). Elsevier.

