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ABSTRACT

The QSAR (Quantitative structure-activity relationship) analysis of mu-
tagenicity of 16 dental monomers has been carried out by means of opti-
mal descriptors calculated with SMILES (Simplified molecular input line
entry system) notation. Statistical characteristicsof thesearen=11, r>=0.67,
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s=0.59, F=18(training set); n=5, r>=0.87, s= 0.46, F=20(test set).
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INTRODUCTION

M utagenicity isdefined asthe degree or measure
of theability to cause mutation, or, aternatively asthe
capacity of aphysical or chemical agent to cause per-
manent genetic aterations. A more detailed definition
of mutagenicity statesthat apure substance or tested
mixtureisapoisonousand infectiousmaterid if thereis
epidemiologica evidencethat showsacausal connec-
tion between exposure of personsto the substance or
mixture and heritable genetic effects; or thereisevi-
dence of mutagenicity inmammalian gem cellsinvivo
as shown by positiveresultsin astudy that measures
mutationstransmitted to of fspring, or positiveresultsin
aninvivo study showing chemica interaction withthe
genetic materialsof mammalian cellsand positivere-
sultsinaninvivo study ng either genemutation
or chromosomal aberrationinsométiccells.

Theevidencereferred to in paragraph b shall be
obtained in accordancewith test methods described in
the ‘Introductionto the OECD guidelineson genetic
toxicol ogy testing and guidance on the selection and
application of assays’, dated March 1, 1987, published
inthethird addendumtothe OECD guiddinesfor gesting
of chemicals; and using testing strategiesdescribed in
the guidelines on the use of mutagenicity testsinthe
toxicology evaluation of chemicals, dated 1986, pub-
lished under theauthority of theminister of nationd hedlth
andwdfareand theminister of the environment®.

Then, understanding and prediicting thechronictoxic
effectsof chemicdss, especialy mutagenicity and carci-
nogenicity hasbecome oneof themgor problemsfaced
by chemistsinvolved in the devel opment of industria
chemicds, aswell asby scientistsstudying thetoxicity
of natural and xenobiotic products. Theactivity of a
chemical towardsliving organisms depends upon the
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physical or chemical action on biological tissues, and
the nature of such actionwill depend ultimately onthe
molecular structure of that chemical. Thiswasrecog-
nized morethan 100 years ago, and sincethenandin
gpecial in thelast two decades, many attempts have
been madeto relatethebiologica activity to molecular
structurein asuitable(i.e. quaitativeor/and quantita-
tive) way'?.

Inorder to assesstheimportance of thisissueitis
worth mentioning that, for example, in Japan based on
theindustria safety and hedlth law(ISHL) amendedin
1979, manufacturersand importers, who introduce any
new work place chemicals, are required to conduct
bacterial mutagenicity testsand to submit thereportsto
theministry of labour of Japan. By thebeginning of the
year 2001, the number of tested for mutagenicity and
registered new chemica shad exceeded ten thousand®.
Itisasoimportant to know that the USfood and drug
administration(FDA), center for drug evakluatino and
research(CDER),office of pharmaceutical sciences
(OPS), Informaticsand computationa safety analysis
staff(ICSAS) isan applied regul atory research unit that
compilestoxicology and safety rel ated databasesasa
toxicologica resourcefor theagency. ICSASalso pro-
duces databases suitable for quantitative structure
activity(QSAR) modeling and usesthesetransformed
databasesto devel op toxicology prediction software
and to evaluate commercia QSAR, SAR, and data
mining software to meet the needs of the FDA, other
regulatory agencies, and thescientificcommunity. These
effortsare accomplished through research collabora-
tionswith softwaredevd opersleveraging arrangements
suchasmaterial transfer agreements(M TAs) and Co-
operative research and development agreements
(CRADAYS).ICSAS missionisto develop acomplete
battery of predictive softwarefor al major toxicology
studiesrecommended by the FDA’s Centers. The soft-
ware can be used to: (a) Improve mead compound se-
lection by identifying and eiminating compoundswith
potentialy sgnificant adversepropertiesearly inthedrug
discovery and devel opment process; (b) Reducethe
useof animasintesting by eiminating non-critica labo-
ratory studies; (c) Facilitate and accel eratethereview
process by making better use of accumulated scientific
knowledge (regul atory decision support); and (d) ex-
pand therole of QSAR and predictivetoxicology by
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encouraging the devel opment of complementary pre-
dictive software through collaboration with software
devel opersand the scientific communityt¥,

Theamessalmonellamutagenicity assay isashort-
term bacterial reverse mutation assay which wasde-
signed to detect potential mutageng®. It hasbeen used
asastandard tool to detect chemical mutagens ever
sinceit wasfirst proposed by Amesin 1975, and is
now one of the most widely used in vitro short-term
assaysthroughout theworld®. Thestrainsemployedin
theAmesassay are based upon several mutantsof Sal-
monella typhimuriumstrain LT-2. Themutationsused
for thetest have high frequenciesof chemicaly induced
reversion andlow ratesof spontaneousreversion. The
most frequently used test strainsare TA100, TA 1535,
TA1537, TA97 and TA98. Among them, stransTA100
and TA 1535 are empl oyed to detect those mutagens
that cause base-pair substitution mutations(e.g. induce
the substitution of a leucine [GAG/CTC] by a
prolinegf GGG/CCC] onthe DNA sequences®.

Theaim of the present study isto analyzethe par-
ticular mutagenicity parameter defined asthe dopesof
revertantsvs. nanomol es of test chemicd inthe Salmo-
nellatest strain TA100with the naturd logarithm of the
sopesIn(TA100) taken from Ref.1”), resorting to apar-
ticular QSAR modd . Wea so want to estimate the pre-
dictiveability of SMILES based optima descriptorsin
QSAR modeling of mutagenicity.

METHOD

Theearliest expression of aquantitative structure-
activity relationships between activity and chemical
structurewas published by Crum Brown and Frazer in
1868-91€,

@ =f(C) 1)

where ® isan expression of biologica responseand C
isameasureof the ‘constitution’ of acompound. Per-
haps the most famous examples of early QSAR are
seen inthelinear rel ationships between the narcotic
action of organic compoundsand their oil/water parti-
tion coefficientd®19. And theoriginsof modern QSAR
may betraced to thework of Corwin Hanschwhoin
the early 1960s proposed that biological ‘reactions’
could betreated like chemical reactionsby thetech-
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TABLE 1: Satistical characteristicsof the modelsin three probesof the monte carlo optimization

2

Co C: Nt r F Nv re s F
1  -415515 410.645 11  0.6706 0.5899 18 5 0.8694  0.4602 20
2 -237.651 229.455 11  0.6680 0.5922 18 5 0.8609  0.5282 19
3 -206.772 199.596 11 0.6706 0.5899 18 5 0.8492  0.4823 17
TABLE 2: Correlation weightsof SMILESfragmentsover  which havebeen calculated as
threepr obes of the montecarlo optimization .
CcWin CW in CWin Number of ~ DCW = k1'=[1CW(SFk) 2
S robe 1 robe 2 robe3 > kinthe .
P P P trainingset  where SF, isthek-th SMILESfragment!67. SMILES
][ i-ggggggé i-gggggg 1-88;8%? g fragments have been detected fromthe SMILESIine
O 00995247 0999423 09990024 1 aflzcord'l ngtothefollowingrules: first, system recog-
H 09987730 1.0029147 1.0036978 2 nizes(if any) four character SMILESfragment, e.g.,
C 1.0000059 0.9992630 1.0000404 71 [N+], [O-], etc.; second, system recognizes (if any)
C@C 1-888121;2 g-ggﬂégg 1-88;%22 2‘2 three character SMILES fragment, e.g., C=C, C#C,
= 09983146 0995566 10004248 14 etc. third, systemrecognizes(if any) two charactersfrag
3 1.0000271 09993011 0.9957878 6 ment, e.g., Cl, Br, etc.; if thereis not recognition of
2 1.0041110 1.0061907 1.0054154 20 abovefragment, system detectsone-character fragment.
1 10024948 1.0119682 1.0094488 22 CW(SF,) iscorrelationweightsof the SF,; nisnumber
( 0.9996765 1.0000266 0.9993291 26

niquesof physica organic chemistry(,

Thereare two key choices one must make when
aoplyingmathematicd relaionshipslike(1). Oneof them
isto choose the set of independent variables denoted
by C and the other oneisto definethefunctiona form
of f. Inthefirg casetherearetoo many possibilitiesand
it haslead to the so-call ed nightmare of the molecular
descriptors.

Among suchlargenumber of possibleoptionsthere
isoneparticularly interesting, useful and convenient. In
fact, onecan resort to the concept of variable (or flex-
ible) descriptorsfor C. Thischoiceisinteresting since
Cisdetermined for each calculationinstead of being
fixed under thisapproximation. Itisalso useful, since
theapplicationisrather smple. Andinadditionitisre-
aly convenient sncefind resultsareimproved with re-
spect to thegpplication to the classical concept of fixed
independent variables. Our research group have em-
ployed severa timesthissort of molecular descriptors
and predi ctions have shown to be quite accurate %9,

We havea so tested severa functiona formsfor f
(i.e. linear, quadratic, etc.), and athough final results
arenot exactly the same, they do not change signifi-
cantly, sothat wereport herethessmplest ong, i.e. lin-
ear relationship, for brevity reasons.

Weresort hereto the employment of aparticular sort
of flexible descriptor, the so-called optimal descriptors,

of SF, inagiven SMILES,

Correlation weightsare cal cul ated by monte carlo
optimization procedure, correl ation coefficient between
the DCW and In(TA 100) over thetraining set isdeter-
mined using thein role of target function. After having
numerical valuesof thecorrel ation weightsonecan cal-
culatethe DCW va ues on each structure of thetraining
and test sets. Generalized model In(TA100)=C +C,
obtained by |east squares method with structures of the
training st should bevalidated with an externa test set.
Sixteen compoundsunder cons deration have been split
intraining(n=11) and test(n=5) setsrandomly, butinsuch
amanner that al SF, ’stakeplaceinthetraining set.

RESULTS

Statistical characteristics of SMILES based one
variablemodelsover three probesof Monte Carlo op-
timization areshownin TABLE 1. Numerical valuesof
thecorreaionweghtsaswell asthelist of the Sk, ’son
compounds under consideration are presented in
TABLE 2. Wedisplay inTABLES 3the DCW calcu-
lationforaSMILES.

Experimenta and cal culated val ues of the mutage-
nicity areshownin TABLE 4. Finaly,inTABLE 5we
present themol eculeschosenin thisstudy together with
their corresponding SMILES code.

Theresulting mathematical modd derived from our
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TABLE 3: DCW calculation for SMILES=‘COC1=CC=C numericd caculationisthefollowing

(OCC2C02)C=C1’ DCW=1.0109080

In(TA100) = -415.515 + 410.645 DCW &)

No. SFy CW(SF)
1 C 1.0000059 and characteristic statistical parameters for the training and
2 o] 0.9995247 test setsare, n= 1, r>=0.6706, s=0.5899, F=18(Training set), =5,
3 c 1.0000059 r’=0.8694, 12 _=0.8545, 5=0.4602, F=20(Test st).
4 1 1.0024948 pred
5 = 0.9988146
6 c 1.0000059 CONCLUSIONS
7 c=C 1.0004423
8 ( 0.9996765 .
9 o) 0.9995247 We have shown that SMILES based optimal de-
10 C 1.0000059 scriptors obtai ned with el even compounds give reason-
11 c 1.0000059 abledood predicti fth . ¢
12 2 1.0041110 g prediction of the mutagenicity parameter for
13 C 1.0000059 fiveexternd compounds. It suggeststhat definite struc-
E CZ’ ‘i-ggjﬁ‘l‘g ture-activity relationshipsexist for mutagenic compounds
16 ( 0.9996765 Then, SMILES invariants can beuseful for devel oping
17 c=C 1.0004423 QSAR mode sfor mutagenictoxicity indifferent cases.
18 1 1.0024948
TABLE 4: Experimental and calculated with Eq. (2) valuesof theln(TA100) for thetraining and test sets
Smiles DCW Exper. Calc. Exper .-calc.
Training set
CC1=CC=C(0CC2C02)C=C1 1.01139 0.86000 -0.19317 1.05317
CC(C1=CC=C(OCC2CO2)C=C1)(C)C 1.01010 -0.36200 -0.72299 0.36099
COC1=CC=C(CC2C02)C=C10C 1.01091 -0.93000 -0.38812 -0.54188
C1(CC2=CC=C(CC3=CC=CC=C3)C=C2)C0o1 1.01098 -1.08000 -0.36233 -0.71767
C1(C3=CC=CC=C3)=CC=CC=C1CC2C02 1.01163 0.62000 -0.09605 0.71605
OC[C@@H]1CO1 1.01061 -0.51400 -0.51466 0.00066
C1(Cc2=Cc=Cc=C2)co1 1.01186 -0.53600 0.00187 -0.53787
COC1=CC(CC2C02)=CC=C10 1.00928 -1.06000 -1.06108 0.00108
COC1=CC=C(CC2C02)C=C1 1.01139 -0.89600 -0.19317 -0.70283
C1(Coc2=CCc=CC=C2)CO1 1.01138 0.17200 -0.19562 0.36762
[C@@H]3(CO3)COC2=C1C=CC=CC1=CC=C2 1.01729 2.23000 2.22933 0.00067
Test st
COC1=CC=C(0OCC2C02)C=C1 1.01091 0.11500 -0.39057 0.50557
COC1=CC=CC=C1CC2C02 1.01204 -0.57600 0.07567 -0.65167
CC1=CC=C(CC2Cc02)C=C1 1.01187 -0.11100 0.00433 -0.11533
OC[C@H]1C0O1 1.01028 -1.04000 -0.64808 -0.39192
[C@H]3(CO3)COC2=C1C=CC=CC1=CC=C2 1.01696 2.10000 2.09502 0.00498

TABLE5: Namesof compoundsunder consider ation and their SMILEScode

Chemical name

SMILES

4-Methoxyphenyl glycidyl ether
4-Methylphenyl glycidyl ether
4-t-Butylphenyl glycidyl ether
m,p-Dimethoxyphenyl propylene oxide
o-Methoxyphenyl propylene oxide
p-Benzyl phenyl propylene oxide
p-Biphenylpropylene oxide

R-Glycidyl alcohol

Phenylpropylene oxide
p-Hydroxy-m-methoxyphenyl propylene oxide
p-Methoxyphenyl propylene oxide
p-Methyl phenyl propylene oxide
Phenoxypropylene oxide

R-Naphthyl glycidyl ether

S-Glycidyl alcohol

S-Naphthyl glycidyl ether

COC1=CC=C(OCC2C02)C=C1
CC1=CC=C(OCC2C02)C=C1
CC(C1=CC=C(OCC2C0O2)C=C1)(C)C
COC1=CC=C(CC2C02)C=C10C

COC1=CC=CC=C1CC2C02

C1(CC2=CC=C(CC3=CC=CC=C3)C=C2)CO1
C1(C3=CC=CC=C3)=CC=CC=C1CC2CO2
OC[C@@H]1CO1

C1(CC2=CC=CC=C2)CO1

COC1=CC(CC2C02)=CC=C10
COC1=CC=C(CC2C02)C=C1

CC1=CC=C(CC2C0O2)C=C1
Cl(COC2=CC=CC=C2)CO1

[C@@H]3(CO3)COC2=C1C=CC=CC1=CC=C2
OC[C@H]1CO1
[C@H]3(CO3)COC2=C1C=CC=CC1=CC=C2
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Wefindthat resorting to rether e aboratefunctiond forms
for functionf do not improvesgnificantly find resultswith
respect tothesmplelinear equation.
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