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ABSTRACT

The QSAR (Quantitative structure-activity relationship) analysis of mu-
tagenicity of 16 dental monomers has been carried out by means of opti-
mal descriptors calculated with SMILES (Simplified molecular input line
entry system) notation. Statistical characteristics of these are n=11, r2=0.67,
s=0.59, F=18(training set); n=5, r2=0.87, s= 0.46, F=20(test set).
 2007 Trade Science Inc. - INDIA
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INTRODUCTION

Mutagenicity is defined as the degree or measure
of the ability to cause mutation, or, alternatively as the
capacity of a physical or chemical agent to cause per-
manent genetic alterations. A more detailed definition
of mutagenicity states that a pure substance or tested
mixture is a poisonous and infectious material if there is
epidemiological evidence that shows a causal connec-
tion between exposure of persons to the substance or
mixture and heritable genetic effects; or there is evi-
dence of mutagenicity in mammalian gem cells in vivo
as shown by positive results in a study that measures
mutations transmitted to offspring, or positive results in
an in vivo study showing chemical interaction with the
genetic materials of mammalian cells and positive re-
sults in an in vivo study assessing either gene mutation
or chromosomal aberration in somatic cells.
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The evidence referred to in paragraph b shall be
obtained in accordance with test methods described in
the �Introduction to the OECD guidelines on genetic
toxicology testing and guidance on the selection and
application of assays�, dated March 1, 1987, published
in the third addendum to the OECD guidelines for gesting
of chemicals; and using testing strategies described in
the guidelines on the use of mutagenicity tests in the
toxicology evaluation of chemicals, dated 1986, pub-
lished under the authority of the minister of national health
and welfare and the minister of the environment[1].

Then, understanding and predicting the chronic toxic
effects of chemicals, especially mutagenicity and carci-
nogenicity has become one of the major problems faced
by chemists involved in the development of industrial
chemicals, as well as by scientists studying the toxicity
of natural and xenobiotic products. The activity of a
chemical towards living organisms depends upon the
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physical or chemical action on biological tissues, and
the nature of such action will depend ultimately on the
molecular structure of that chemical. This was recog-
nized more than 100 years ago, and since then and in
special in the last two decades, many attempts have
been made to relate the biological activity to molecular
structure in a suitable (i.e. qualitative or/and quantita-
tive) way[2].

In order to assess the importance of this issue it is
worth mentioning that, for example, in Japan based on
the industrial safety and health law(ISHL) amended in
1979, manufacturers and importers, who introduce any
new work place chemicals, are required to conduct
bacterial mutagenicity tests and to submit the reports to
the ministry of labour of Japan. By the beginning of the
year 2001, the number of tested for mutagenicity and
registered new chemicals had exceeded ten thousand[3].
It is also important to know that the US food and drug
administration(FDA), center for drug evakluatino and
research(CDER),office of pharmaceutical sciences
(OPS), Informatics and computational safety analysis
staff(ICSAS) is an applied regulatory research unit that
compiles toxicology and safety related databases as a
toxicological resource for the agency. ICSAS also pro-
duces databases suitable for quantitative structure
activity(QSAR) modeling and uses these transformed
databases to develop toxicology prediction software
and to evaluate commercial QSAR, SAR, and data
mining software to meet the needs of the FDA, other
regulatory agencies, and the scientific community. These
efforts are accomplished through research collabora-
tions with software developers leveraging arrangements
such as material transfer agreements(MTAs) and Co-
operative research and development agreements
(CRADAs). ICSAS� mission is to develop a complete
battery of predictive software for all major toxicology
studies recommended by the FDA�s Centers. The soft-
ware can be used to: (a) Improve mead compound se-
lection by identifying and eliminating compounds with
potentially significant adverse properties early in the drug
discovery and development process; (b) Reduce the
use of animals in testing by eliminating non-critical labo-
ratory studies; (c) Facilitate and accelerate the review
process by making better use of accumulated scientific
knowledge (regulatory decision support); and (d) ex-
pand the role of QSAR and predictive toxicology by

encouraging the development of complementary pre-
dictive software through collaboration with software
developers and the scientific community[1].

The ames salmonella mutagenicity assay is a short-
term bacterial reverse mutation assay which was de-
signed to detect potential mutagens[4]. It has been used
as a standard tool to detect chemical mutagens ever
since it was first proposed by Ames in 1975, and is
now one of the most widely used in vitro short-term
assays throughout the world[5]. The strains employed in
the Ames assay are based upon several mutants of Sal-
monella typhimurium strain LT-2. The mutations used
for the test have high frequencies of chemically induced
reversion and low rates of spontaneous reversion. The
most frequently used test strains are TA100, TA1535,
TA1537, TA97 and TA98. Among them, strains TA100
and TA1535 are employed to detect those mutagens
that cause base-pair substitution mutations (e.g. induce
the substitution of a leucine [GAG/CTC] by a
proline[GGG/CCC] on the DNA sequences[6].

The aim of the present study is to analyze the par-
ticular mutagenicity parameter defined as the slopes of
revertants vs. nanomoles of test chemical in the Salmo-
nella test strain TA100 with the natural logarithm of the
slopes ln(TA100) taken from Ref.[7], resorting to a par-
ticular QSAR model. We also want to estimate the pre-
dictive ability of SMILES based optimal descriptors in
QSAR modeling of mutagenicity.

METHOD

The earliest expression of a quantitative structure-
activity relationships between activity and chemical
structure was published by Crum Brown and Frazer in
1868-9[8].

= f(C)  (1)

where  is an expression of biological response and C
is a measure of the �constitution� of a compound. Per-
haps the most famous examples of early QSAR are
seen in the linear relationships between the narcotic
action of organic compounds and their oil/water parti-
tion coefficients[9,10]. And the origins of modern QSAR
may be traced to the work of Corwin Hansch who in
the early 1960s proposed that biological �reactions�
could be treated like chemical reactions by the tech-
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niques of physical organic chemistry[11].
There are two key choices one must make when

applying mathematical relationships like (1). One of them
is to choose the set of independent variables denoted
by C and the other one is to define the functional form
of f. In the first case there are too many possibilities and
it has lead to the so-called nightmare of the molecular
descriptors.

Among such large number of possible options there
is one particularly interesting, useful and convenient. In
fact, one can resort to the concept of variable (or flex-
ible) descriptors for C. This choice is interesting since
C is determined for each calculation instead of being
fixed under this approximation. It is also useful, since
the application is rather simple. And in addition it is re-
ally convenient since final results are improved with re-
spect to the application to the classical concept of fixed
independent variables. Our research group have em-
ployed several times this sort of molecular descriptors
and predictions have shown to be quite accurate[12-15].

We have also tested several functional forms for f
(i.e. linear, quadratic, etc.), and although final results
are not exactly the same, they do not change signifi-
cantly, so that we report here the simplest one, i.e. lin-
ear relationship, for brevity reasons.
We resort here to the employment of a particular sort
of flexible descriptor, the so-called optimal descriptors,

which have been calculated as

)SFk(CWDCW
n

1k
 (2)

where SF
k
 is the k-th SMILES fragment[16,17]. SMILES

fragments have been detected from the SMILES line
according to the following rules: first, system recog-
nizes (if any) four character SMILES fragment, e.g.,
[N+], [O-], etc.; second, system recognizes (if any)
three character SMILES fragment, e.g., C=C, C#C,
etc.; third, system recognizes(if any) two characters frag-
ment, e.g., Cl, Br, etc.; if there is not recognition of
above fragment, system detects one-character fragment.
CW(SF

k
) is correlation weights of the SF

k
; n is number

of SF
k
 in a given SMILES.

Correlation weights are calculated by monte carlo
optimization procedure, correlation coefficient between
the DCW and ln(TA100) over the training set is deter-
mined using the in role of target function. After having
numerical values of the correlation weights one can cal-
culate the DCW values on each structure of the training
and test sets. Generalized model ln(TA100)=C

0
+C

1

obtained by least squares method with structures of the
training set should be validated with an external test set.
Sixteen compounds under consideration have been split
in training(n=11) and test(n=5) sets randomly, but in such
a manner that all SF

k
�s take place in the training set.

RESULTS

Statistical characteristics of SMILES based one
variable models over three probes of Monte Carlo op-
timization are shown in TABLE 1. Numerical values of
the correlation weights as well as the list of the SFk�s on
compounds under consideration are presented in
TABLE 2. We display in TABLES 3 the DCW calcu-
lation for a SMILES.

Experimental and calculated values of the mutage-
nicity are shown in TABLE 4. Finally, in TABLE 5 we
present the molecules chosen in this study together with
their corresponding SMILES code.

The resulting mathematical model derived from our

TABLE 1: Statistical characteristics of the models in three probes of the monte carlo optimization

 C0 C1 Nt r2 s F Nv r2 s F 
1 -415.515 410.645 11 0.6706 0.5899 18 5 0.8694 0.4602 20 
2 -237.651 229.455 11 0.6680 0.5922 18 5 0.8609 0.5282 19 
3 -206.772 199.596 11 0.6706 0.5899 18 5 0.8492 0.4823 17 

TABLE 2 : Correlation weights of SMILES fragments over
three probes of the monte carlo optimization

SFk 
CW in 
probe 1 

CW in  
probe 2 

CW in 
probe 3 

Number of 
SFk in the 

training set 
] 1.0036031 1.0047425 1.0015136 2 
[ 1.0034938 1.0063708 1.0050731 2 
O 0.9995247 0.9999423 0.9990024 21 
H 0.9987730 1.0029147 1.0036978 2 
C 1.0000059 0.9992630 1.0000404 71 
@ 1.0003216 0.9987183 1.0028250 4 

C=C 1.0004423 1.0014567 1.0037321 24 
= 0.9988146 0.9995566 1.0004248 14 
3 1.0000271 0.9993011 0.9957878 6 
2 1.0041110 1.0061907 1.0054154 20 
1 1.0024948 1.0119682 1.0094488 22 
( 0.9996765 1.0000266 0.9993291 26 
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TABLE 3 : DCW calculation for SMILES=�COC1=CC=C
(OCC2CO2)C=C1� DCW=1.0109080

No. SFk CW(SFk) 
1 C 1.0000059 
2 O 0.9995247 
3 C 1.0000059 
4 1 1.0024948 
5 = 0.9988146 
6 C 1.0000059 
7 C=C 1.0004423 
8 ( 0.9996765 
9 O 0.9995247 
10 C 1.0000059 
11 C 1.0000059 
12 2 1.0041110 
13 C 1.0000059 
14 O 0.9995247 
15 2 1.0041110 
16 ( 0.9996765 
17 C=C 1.0004423 
18 1 1.0024948 

Smiles DCW Exper. Calc. Exper.-calc. 
Training set 
CC1=CC=C(OCC2CO2)C=C1 1.01139 0.86000 -0.19317 1.05317 
CC(C1=CC=C(OCC2CO2)C=C1)(C)C 1.01010 -0.36200 -0.72299 0.36099 
COC1=CC=C(CC2CO2)C=C1OC 1.01091 -0.93000 -0.38812 -0.54188 
C1(CC2=CC=C(CC3=CC=CC=C3)C=C2)CO1 1.01098 -1.08000 -0.36233 -0.71767 
C1(C3=CC=CC=C3)=CC=CC=C1CC2CO2 1.01163 0.62000 -0.09605 0.71605 
OC[C@@H]1CO1 1.01061 -0.51400 -0.51466 0.00066 
C1(CC2=CC=CC=C2)CO1 1.01186 -0.53600 0.00187 -0.53787 
COC1=CC(CC2CO2)=CC=C1O 1.00928 -1.06000 -1.06108 0.00108 
COC1=CC=C(CC2CO2)C=C1 1.01139 -0.89600 -0.19317 -0.70283 
C1(COC2=CC=CC=C2)CO1 1.01138 0.17200 -0.19562 0.36762 
[C@@H]3(CO3)COC2=C1C=CC=CC1=CC=C2 1.01729 2.23000 2.22933 0.00067 
Test set 
COC1=CC=C(OCC2CO2)C=C1 1.01091 0.11500 -0.39057 0.50557 
COC1=CC=CC=C1CC2CO2 1.01204 -0.57600 0.07567 -0.65167 
CC1=CC=C(CC2CO2)C=C1 1.01187 -0.11100 0.00433 -0.11533 
OC[C@H]1CO1 1.01028 -1.04000 -0.64808 -0.39192 
[C@H]3(CO3)COC2=C1C=CC=CC1=CC=C2 1.01696 2.10000 2.09502 0.00498 

TABLE 4 : Experimental and calculated with Eq. (2) values of the ln(TA100) for thetraining and test sets

TABLE 5 : Names of compounds under consideration and their SMILES code

Chemical name SMILES 
 4-Methoxyphenyl glycidyl ether  COC1=CC=C(OCC2CO2)C=C1 
 4-Methylphenyl glycidyl ether  CC1=CC=C(OCC2CO2)C=C1  
 4-t-Butylphenyl glycidyl ether  CC(C1=CC=C(OCC2CO2)C=C1)(C)C  
 m,p-Dimethoxyphenyl propylene oxide  COC1=CC=C(CC2CO2)C=C1OC 
 o-Methoxyphenylpropylene oxide  COC1=CC=CC=C1CC2CO2 
 p-Benzylphenylpropylene oxide  C1(CC2=CC=C(CC3=CC=CC=C3)C=C2)CO1 
 p-Biphenylpropylene oxide  C1(C3=CC=CC=C3)=CC=CC=C1CC2CO2 
 R-Glycidyl alcohol  OC[C@@H]1CO1 
 Phenylpropylene oxide  C1(CC2=CC=CC=C2)CO1 
 p-Hydroxy-m-methoxyphenyl propylene oxide  COC1=CC(CC2CO2)=CC=C1O 
 p-Methoxyphenylpropylene oxide  COC1=CC=C(CC2CO2)C=C1 
 p-Methylphenylpropylene oxide  CC1=CC=C(CC2CO2)C=C1  
 Phenoxypropylene oxide  C1(COC2=CC=CC=C2)CO1 
 R-Naphthyl glycidyl ether  [C@@H]3(CO3)COC2=C1C=CC=CC1=CC=C2 
 S-Glycidyl alcohol  OC[C@H]1CO1  
 S-Naphthyl glycidyl ether  [C@H]3(CO3)COC2=C1C=CC=CC1=CC=C2 

numerical calculation is the following

ln(TA100) = -415.515 + 410.645 DCW (3)

and characteristic statistical parameters for the training and
test sets are, n= 1, r2=0.6706, s=0.5899, F=18(Training set), n=5,
r2=0.8694, r2

pred
=0.8545, s=0.4602, F=20(Test set).

CONCLUSIONS

We have shown that SMILES based optimal de-
scriptors obtained with eleven compounds give reason-
able good prediction of the mutagenicity parameter for
five external compounds. It suggests that definite struc-
ture-activity relationships exist for mutagenic compounds.
Then, SMILES invariants can be useful for developing
QSAR models for mutagenic toxicity in different cases.
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We find that resorting to rather elaborate functional forms
for function f do not improve significantly final results with
respect to the simple linear equation.
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