ISSN : 0974 - 7486

Volume 9 Issue 7

Materials Science An Indian Journal FUID Paper

Trade Science Inc.

MSAIJ, 9(7), 2013 [277-281]

Simulated multi-crystalline silicon solar cells with aluminum back surface field

R.Tala-Ighil

Institute of Electronics & Electrical Engineering, University M'Hamed Bougara, Umbb, Boumerdes 35000, (ALGERIA) E-mail: t razika@hotmail.com

PACS codes: 71.55 Cn; 72.20.Jv; 72.40.+w; 73.40.Lq; 73.40.Ns

ABSTRACT

In photovoltaic solar cells manufacturing, we are confronted to the perpetual challenge for conversion efficiency enhancing.

We propose in this work to quantify the back surface field aluminium (Al-BSF) rear contact effect deposited by screen printing metallization.

Al-BSF numerical simulation has been performed by the use of softwares dedicated to photovoltaic like PC1D, SCAPS 2.7 and AFORS-HET.

In this work, a $SiN_{\mu}/Si(n^+)/Si(p)/Si(p^+)$ structure is studied. This means that we have a classical junction np passivated at the front face with SiNx antireflective coating (ARC) and at the rear face a screen printed Aluminum contact.

The back Al-BSF, must to be thick (no least 10µm) and highly p-doped (holes concentration between 10¹⁸ and 10¹⁹ cm⁻³) in order to reduce effective rear recombination velocity, yielding to an enhancement of the Al layer performance.

Were inserted in the software parameters data: the lifetime measured for the inner bulk (τ_{p} =30 µs and τ_{p} =90 µs) with Al diffusion (10.8 µm deep).

For emitter doping equals to 1.5*10²⁰ cm⁻³, front surface recombination velocity $S_f = 8600 \text{ cm/s}$ and the effective minority diffusion length $L_{eff} = 227$ μm.

After simulation of the input parameters, an efficiency of 18.0% is obtained by PC1D, in good accordance with the results presented in the literature. While the obtained efficiencies results with AFORS-HET and SCAPS 2.7 are 17.15% and 18.73% respectively. A rapprochement occurs between PC1D and SCAPS quantum efficiency curves with begin values ~ 70% QE while AFORS-HET is so far with ~ 34% QE.

© 2013 Trade Science Inc. - INDIA

INTRODUCTION

Multi-crystalline silicon solar cells represent an unavoidable alternative to mono-crystalline silicon for large

KEYWORDS

Solar cells; Multi-crystalline silicon; BSF; PC1D; SCAPS; AFORS-HET: Aluminium.

scale industrial fabrication^[1,2]. However, multi-crystalline silicon properties are really different than monocrystalline Czochralski (CZ) or Float zone (FZ) silicon growth. This is due essentially to the grain boundary

Full Paper

presence which reduces the diffusion length and enhances the defects concentration.

Aluminum is generally used as back contact in photovoltaic cells thanks to its properties. It creates a heavily doped p⁺ region that provides a good (low resistivity) ohmic contact on the p-type silicon forming a back surface field^[3]. As we know, the eutectic point of Al-Si diagram occurs at $T_E = 577^{\circ}$ C and its melting point is 660°C. In solar cells technology, we work at temperatures higher than the eutectic point and the melting point of aluminium. So, during the heating process, silicon dissolves in aluminium for $T < T_E$ and continues to dissolve for $T > T_E$. While in the cooling process, the silicon quantity exceeding the eutectic composition will form the well known p⁺ BSF layer. Its thickness is of about 10µm.

A highly doped BSF permits to reduce the back recombination velocity at the contact metal-semiconductor. But very high doping exceeding 5.10¹⁹ may have the inverse effect^[4].

In this work, we propose to simulate a BSF in the multi-crystalline silicon structure $SiN_x/Si(n^+)/Si(p)/Si(p^+)$ by the employment of three main photovoltaic dedicated softwares such: PC1D version 5.9, SCAPS version 2.7 and AFORS-HET version 2.2.

PC-1D program solves the nonlinear equations of quasi one-dimensional transport of electrons and holes in semiconductor devices, including photovoltaic devices in one dimension by using the finite element method^[5]. While SCAPS-1D program solves the equations for structures containing a number of semiconductor layers which have an arbitrary doping profile (as a function of the position) with an arbitrary distribution of energy levels deep donors or acceptors in different types of illumination. Iterations resolutions equations are made until algorithm convergence^[6,7].

AFORS-HET allows to model homo-as well as hetero-junction devices. An arbitrary sequence of semiconducting layers can be modelled. A variety of boundary conditions can be chosen. The program solves the one dimensional semiconductor equations in steadystate and for a small sinusoidal ac-perturbation^[8].

DEVICE MODELLING

The structure to model is composed of multi-crystal-

Materials Science Au Iudiau Ijourual

line silicon wafer type p which undergoes phosphorus diffusion at the front face in order to create a n⁺/p junction. In our case, we will insert the real technological parameters used in our laboratory such a junction depth of 0.7 μ m and 1.85 10²⁰ cm⁻³ electrons concentration. A passivated and ARC layer of SiN_x (thickness: 79 nm and refractive index 2) is deposited. The rear contact forms a BSF by creating the junction P⁺/P. Figure 1 below illustrates the modelled structure SiN_x/Si(n⁺)/Si(p)/Si(p⁺).

In industrial solar cells covered with screen printed aluminum, forming an Al-BSF, the rear contact has a back reflectance of 65% and a back recombination velocity (BSRV) of 1000 cm/s on 1 Ω cm silicon wafer^[9].

The back Al-BSF must to be thick (no least $10\mu m$)^[10] and highly doped (holes concentration p between 10^{18} and 10^{19} cm⁻³) in order to reduce effective rear recombination velocity^[11], yielding to an enhancement of the Al layer performance.

We insert for Al-BSF layers the lifetime measured for the inner bulk ($\tau_n = 30 \ \mu s$ and $\tau_p = 90 \ \mu s$) for multicrystalline silicon cells with Aluminum diffusion of 10.8 μm in depth^[12]. TABLE 1 resumes the input data used for modeling the multi-crystalline BSF structure.

TABLE 1 : Input data for PC1D, SCAPS and AFORS-HET.

Device				
Device area	1cm ²			
Single layer Anti-reflective coating ^[13] Front reflexion	n=2.0 t=79nm			
ABSORBER REGION				
Thickness	280µm ^[14]			
Material	From Si.mat			
Dielectric constant	11.9			
Band gap	1.124 eV			
Intrinsic concentration at 300K	1E10 cm ⁻³			
Refractive index	3.58			
Absorption coefficient	From internal model			
Free carrier absorption	enabled			
P-type background doping	1E16			
Front diffusion	N-type 1.85E20 junction n/p=0.7 μ m			
1 st rear diffusion	P-type 1E19 junction p+/p=10 μ m			
Bulk recombination	$\tau_n=30\mu s, \tau_p=90\mu s$			
Front surface recombination	$S_n = S_p = 8600 \text{ cm/s}^{[15]}$			
Rear surface recombination	$S_n = S_p = 1000 \text{ cm/s}^{[9]}$			
Excitation				
Excitation from	One-sun AM1.5			
Constant intensity	0.1 Wcm ⁻²			

Full Paper

Figure 1 : $SiN_x/Si(n^+)/Si(p)/Si(p^+)$ multi-crystalline silicon based solar cell proposed to simulation.

RESULTS & DISCUSSION

After inserting the input parameters of the structure $SiN_x/Si(n^+)/Si(p)/Si(p^+)$. The obtained results I(V) and quantum efficiency curves are represented in Figure 2, Figure 3 and Figure 4 for PC1D, SCAPS and AFORS-HET.

Figure 2 : PC1D 5.9 simulation results for $SiN_x/Si(n^+)/Si(p)/Si(p^+)$: (a) I(V), (b) quantum efficiency.

Figure 3 : SCAPS 2.7 simulation results for $SiN_x/Si(n^+)/Si(p)/Si(p^+)$: (a) I(V), (b) quantum efficiency.

The obtained results are summarized in the TABLE 2 below:

Conventional structures without BSF give a conversion efficiency around 14%, as developed by Van Sark et al.^[16].

It is so therefore clear that a structure with BSF increases the conversion efficiency until reaching 17 to 18% depending on the used software.

The question that arises: why is there a difference in the results depending on the software?

For PC1D, an efficiency of 18% was obtained while SCAPS give us 18.73% and AFORS-HET 17.15%. Concerning the quantum efficiency, as represented in Figures 2b, 3b and 3c, one can remark that the curves have the same shape but for:

- PC1D, the first level occurs at approximately 350nm with 72.4% QE and reaches a maximum at 97.51% for 1060nm.
- SCAPS, the first level occurs at approximately 350nm with 71.0% QE and reaches a maximum at 96.71% for 900nm.

Full Paper

 AFORS-HET, the first level occurs at approximately 350nm with 34% QE and reaches a maximum at 98% for 1100nm.

Figure 4 : AFORS-HET simulation results for $SiN_x/Si(n^+)/Si(p)/Si(p^+)$: (a) I(V), (b) quantum efficiency.

TABLE 2 : $SiN_x/Si(n^+)/Si(p)/Si(p^+)$ simulation results summary by using PC1D, SCAPS and AFORS-HET.

Software	Voc (mV)	Isc (mA)	FF (%)	η (%)
Without BSF ^[16]	602.8	31.19	77.07	14.19
PC1D	630.4	34.2	83.48	18.00
SCAPS 2.7	626	35.57	84.05	18.73
AFORS-HET	627.3	34.93	78.25	17.15

We remark a rapprochement between PC1D and SCAPS quantum efficiency curves with begin values ~ 70% QE while AFORS-HET is so far with ~ 34% QE.

The PC1D is mainly dedicated to silicon. It is well suitable for our structure to simulate. The obtained values coincide with the literature^[14]. But don't take into account the deep interface states and profound bulk states like in AFORS- HET and SCAPS^[17].

Materials Science An Indian Journal

While the recent version 2.7 of SCAPS treat thick substrates and therefore is suitable to our problem. But with a limit for the high degeneracy at the front junction to 10^{20} cm⁻³. So our value $1.85*10^{20}$ can not be taken into consideration.

Regarding to AFORS-HET, it is obvious that it is rather dedicated to hetero-junction structures like HIT layers and thin films than our kind of homo-junction with thick substrate.

CONCLUSION

Multi-crystalline silicon solar cells with back surface field BSF and SiN_x anti-reflective coating have been simulated by using photovoltaic dedicated softwares.

Three programs have been employed: PC1D; SCAPS and AFORS-HET.

By combining the experimental values with those obtained in the literature, an input data table for BSF multi-crystalline silicon has been formed.

The obtained conversion efficiencies are: 18%, 18.73% and 17.15% for PC1D, SCAPS and AFORS-HET respectively.

PC1D and SCAPS quantum efficiency curves converge with begin values ~ 70% QE while AFORS-HET is so far with ~ 34% QE.

One can deduce that PC1D is the most suitable software for silicon. While the recent version 2.7 of SCAPS treats thick substrates but has a limit for the high degeneracy electron concentration.

AFORS-HET is the non adaptable software for our BSF structure because it is dedicated to heterojunction structures like HIT layers and thin films than our kind of homo-junction with thick substrate.

In conclusion, simulation with PC1D and SCAPS are more suitable to the structure $SiN_x/Si(n^+)/Si(p)/Si(p^+)$ than afors-Het.

The BSF is a significant parameter in increasing the conversion efficiency of solar cells based on multi-crystalline silicon. It requires a finer thickness of silicon wafer which should be greater than 200µm for a good substrate quality^[18].

Experimentally, the BSF is easily integrated into the multi-crystalline silicon solar cells fabrication process, since simultaneous annealing for Ag and Al contacts and SiN_v passivation can be done^[19].

281

REFERENCES

- [1] H.E.Elgamel, S.Sivoththaman, M.Y.Ghannam, J.Nijs, R.Mertens, M.Rodot, D.Sarti, Le Quang Nam; 640 mV open-circuit voltage multicrystalline silicon solar cells: role of base doping on device parameters, Solar Energy Materials and Solar Cells, 36, 99-105 (1994).
- [2] Subhash M.Joshi, Ulrich M.Gosele, Teh Y.Tan; Extended high temperature Al gettering for improvement and homogenization of minority carrier diffusion lengths in multicrystalline Si, Solar Energy Materials & Solar Cells, 70, 231–238 (2001).
- [3] L.Sardi, S.Bargioni, C.Canali, P.Davoli, M.Prudenziata, V.Valbusa; Some features of thick film technology for the back metallization of solar cells, Solar Cells, 11, 51-67 (1984).
- [4] Nichiporuk Olesky; Simulation, fabrication et analyse de cellules photovoltaïques à contacts arrières interdigités, Institut National Des Sciences Appliquées De Lyon, Mai, (**2005**).
- [5] P.A.Basore, D.A.Clugston; In: Proceedings of the 25th IEEE photovoltaic specialists conference, Washington, DC, USA, 377-381 (1996).
- [6] J.Verschraegen, M.Burgelman; Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS, Thin Solid Films, 515(15), 6276-6279 (2007).
- [7] S.Degrave, M.Burgelman, P.Nollet; Modelling of polycrystalline thin film solar cells: New features in SCAPS version 2.3, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, may 2003, WCPEC-3, Osaka, 487-490 (2003).
- [8] A.Froitzheim, R.Stangl, L.Elstner, M.Kriegel, W.Fuhs; AFORS-HET: A computer program for the simulation of heterojunction solar cells; Proceedings WCPEC4, 4th World Conference on Photovoltaic Energy Conversion, Hawaii, USA, May (2006).
- [9] M.Tucci, E.Talgorn, L.Serenelli, E.Salza, M.Izzi, P.Mangiapane; Laser fired back contact for silicon solar cells; Thin Solid Films, 516, 6767-6770 (2008).
- [10] B.Thuillier; Caractérisation structurale des contacts ohmiques réalisés à partir d'encres métalliques sur cellules photovoltaïques en silicium multi-cristallin, Institut national des sciences appliqués de Lyon, (2001).

[11] M.Moemongkolkiat, K.Nakayashiki, D.S.Kim, R.Kopercek, A.Rohatgi; J.Electrochem.Soc., 153(1), G53 (2006).

- [12] R.Lago-Aurrekoetxea, C.Del Canizo, I.Tobias, A.Luque; Measurement of bulk and rear recombination components and application to solar cells with an Al Back layer, Solid-State Electronics 49, 49-55 (2005).
- [13] Ben M.Damiani; Investigation of light induced degradation in promising photovoltaic grade silicon and development of porous silicon anti-reflection coatings for silicon solar cells, Doctorate thesis, Georgia Institute of Technology; April (2004).
- [14] S.Ponce-Alcantara, C.Del Canizo, A.Luque; Adaptation of monocrystalline solar cell process to multicrystalline materials, Solar Energy Materials & Solar Cells, 87, 411-421 (2005).
- [15] S.Noel, A.Slaoui, S.Peters, H.Lautenschlager, R.Lautenschlager, R.Schindler, J.C.Muller; Optimization process for high efficiency silicon solar cells, Solar Energy Materials & Solar Cells 65, 495-501 (2001).
- [16] W.G.J.H.M.Van Sark, A.Meijerink, R.E.I.Schropp, J.A.M.Van Roosmalen, E.H.Lysen; Enhancing solar cell efficiency by using spectral converters; Solar Energy Materials & Solar Cells, 87, 395-409 (2005).
- [17] M.Burgelman, J.Verschragen, S.Degrave, P.Nollet; Modeling thin-film PV devices, Progress in photovoltaics: Research and Applications, 12, 143-153 (2004).
- [18] C.J.J.Tool, A.R.Burgers, P.Manshanden, A.W.Weeber; Effect of wafer thickness on the performance of mc-si solar cells; 17th European photovoltaic solar energy conference, Munich, (2001).
- [19] A.Rohatgi, V.Yelundur, J.Jeong, A.Ebong, M.D.Rosenblum, J.I.Hanoka; Fundamental understanding and implementation of Al-enhanced PECVD SiN_x hydrogenation in silicon ribbons, Solar Energy Materials & Solar Cells, 74, 117-126 (2002).

