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ABSTRACT  

This paper presents an investigation of the self-focusing behaviour of radially symmetrical 

Gaussian laser beam propagating in an axially inhomogeneous collisional plasma. Considering the non-

linearity to arise from the redistribution of electrons, due to thermal conduction across the cross-section 

of the beam and following the extended version of Sodha et al. theory based on the WKB and paraxial –

ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of 

different types of axial inhomogeneities in plasma, on the self-focusing of laser beam has been studied 

for arbitrary large magnitude of nonlinearity. The self-focusing is found to depend on type of axial 

inhomogeneity as well as characteristic scale length of axial inhomogeneity. When thermal conduction is 

the dominant mechanism of nonlinearity of dielectric constant, the critical power Pcr of  the beam is seen 

to be the same as that given by the small nonlinearity theory. When power of the beam P > Pcr, the 

medium behaves as an oscillatory wave-guide. 

Key words: Paranial ray approximation, Laser beam, Colloisional inhomogeneous plasma, Self -

focusing. 

INTRODUCTION  

The understanding of self-focusing and filamentation of laser light may be 

important to the success of laser fusion. In laser-induced fusion, the most important 

problem is the efficient coupling of the energy of the laser beam to plasma to heat the 

latter1. In this coupling process, many nonlinear phenomena such as self-focusing, 
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filamentation instabilities, stimulated Raman scattering (SRS) and stimulated Brillouin 

scattering (SBS) play a crucial role2,3. The laser light absorption, penetration, and 

conversion to x-rays could also be affected by self-focusing and filamentation.  

But most of these studies (theoretical and numerical) are limited to various 

approximations such as homogeneous medium, non-linear part of the dielectric constant 

much smaller than the linear part etc. These approximations are rather restrictive and limit 

the applicability of the theory to many real life situations.  

There are number of mechanisms that can degrade the uniformity of a laser beam. 

At very high intensities, the relativistic mass variation of the electrons oscillating in the 

laser electric field can increase the index of refraction in the center of a beam or in a hot 

spot in the beam4, 5. This leads to focusing that increases the mass variation further, causing 

the system to go unstable. At high intensities, the ponderomotive force of the laser can 

drive plasma from the interior of a beam; thus, raising the index of refraction there, leading 

to focusing and instability6. Finally, at lower intensities, if the beam or hot spot width is 

large compared with an electron mean free path λm, inverse Bremsstrahlung heating can 

raise the pressure in the interior of the beam. The increased pressure drives plasma out of 

the beam, once again raising the index of refraction there, leading to instability7. The first 

mechanism, relativistic self-focusing is not of interest to laser fusion. With the intensities, 

wavelengths, and plasma scale lengths envisioned for reactor targets, little self-focusing is 

expected from this mechanism. Ponderomotive self-focusing could be important for small-

scale hot spots. The third mechanism, thermal self-focusing, is important in the focusing of 

whole beams and large scale hot spots. In collisional plasmas, the nonlinearity can also 

arise from the redistribution of electrons, due to thermal conduction across the cross-

section of the beam. The relative importance of energy relaxation due to collisions and 

thermal conduction mechanism is given by ratio8. 

 R  = 








conductionthermaltoduelossenergyofRate

collisionstoduelossenergyofRate
 

 = 







M

m2
2

electronsofpathfreemean

beamtheofwidth








 …(1) 

m and M are the mass of the electron and the scatterer (atoms/molecules in case of 

weakly ionized plasma and ions in strongly ionized plasma), respectively. In a strongly 

ionized plasma, mean free path λm, of electrons is sufficiently large and the ratio R is less 
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than unity. In this paper, we have discussed the self-focusing of laser beams under such 

conditions.  

Sodha et al.8 had developed a steady state paraxial theory of self-focusing of laser 

beam in a non-linear, non-absorbing homogeneous medium. The extended version of this 

theory has been used in the present study of self-focusing of laser beam in an 

inhomogeneous plasma in the paraxial ray approximation, taking energy loss due to 

thermal conduction.  

Inhomogeneous plasma medium  

Inhomogeneous plasma means that charge density is not uniform throughout the 

space where laser plasma interactions are considered. For the study of self-focusing of 

laser beam in plasma, some simple models for variations of charge density are devised and 

considered here in the present analysis. The inhomogeneity  in charge density of the 

plasma at any time in space can be represented by the relation  

 N (x, y, z, t)  = NoW (x, y, z, t),  ...(2) 

where No is the density of the plasma at x = 0, y = 0, z = 0 and t = 0. Here, W (x, y, 

z, t) is the density profile function and may have different shapes for different types of 

inhomgeneities.  

Let the laser beam, whose effect is to be studied, is propagating in z-direction in 

plasma. In axially inhomogeneous plasma, the electron density varies along the z-direction 

only i.e. the non-uniformity in charge density is present in the propagation direction only 

and system is supposed to be under steady-state i.e. time-independent. For such type of 

inhomogeneity (axial only), the eq. (2) can be rewritten as  

 N(z) = No W(z),  ...(3) 

where No is a constant (density of plasma medium at the boundary, where wave is 

incident on it i.e. at z = 0) and density profile function W(z) is only z-dependent. This 

function W(z) can have different shapes corresponding to different types of axially 

inhomogeneous plasma. In the present study, few shapes are considered which are founded 

to be of practical importance.  

Linearly  increasing  axial  inhomogeneity 

The charge density is supposed to increase linearly with the propagation distance. 

For such type of axially inhomogeneous plasma, density profile function which is of 
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practical importance can be written as  

 W(z) = 1 + z/L ...(4) 

Here, z is the propagation distance in the plasma medium and L is the 

characteristics scale length of axial inhomogeneity.  

Exponentially varying axial inhomogeneities 

The electron charge density functions for such type of axially inhomogeneous 

plasma which are considered in the present study, can be written as  

 W (z) = 1+ 
2

2

L

z
  exp 








−

2

2

L

z
 ...(5) 

and  W (z) = 1+ exp 

2

L

z
1 







 − . ...(6)  

The value of plasma frequency depends on the plasma charge density. Therefore, it 

is noticed that the plasma frequency is not a constant (as in case of homogeneous plasma) 

but varies in inhomogeneous plasma as – 

 
m

eN4 2
2

p

π
=ω  ...(7) 

Substitution of N from eq. (3) for axially inhomogeneous plasma, gives 

 
m

)z(WeN4 2

o2

p

π
=ω  ...(8) 

 = 
2

poω W(z),  

where 
2

poω = 
m

eN4 2

oπ
is the homogeneous plasma frequency or the plasma 

frequency at the boundary of inhomogeneous plasma. Eq. (8) gives the z-dependence of 

plasma frequency in case of axially inhomogeneous plasma. For different shapes of W(z) 

i.e. for different type of inhomogeneities, this dependence is going to be different.  

Self-focusing equation with arbitrany large non-linearity    

The intensity distribution of a linearly polarised Gaussian laser beam can be written 
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as – 

 E E* = 
2

oE exp ( )2o2 r/r−  ...(9) 

where r is the radial coordinate of the cylindrical coordinate system and ro is the 

initial beam width. Eo represents the amplitude of the electric field due to propagating laser 

beam. For the study of self-focussing phenomena, the nonlinear dielectric constant of the 

medium can be written as – 

 ∈(<E E*>)  = ∈o + φ (<EE*>) ...(10) 

In the paraxial – ray approximation, one generaly expands φ  around φ ≅ 0. 

However with such an expansion, one can study only those cases where φ <<∈o. To study

self-focusing for arbitrary large non-linearity, one should expand φ around an arbitrary 
large value at r = 0. In order to do this, the non-linear dielectric constant of the medium 

may be rewritten as  

∈ [<EE*>] = ∈o + φ 
( )












2

2

o

f)f(k2

Eok
+ φ [<EE*>]  – φ












2

2

o

f)f(k2

E)o(k
 ...(11) 

 or, ∈ (<EE*>) = '

0
∈ (f) + ψ(r, f)  ...(12) 

 where 
'

0
∈  (f) = ∈o  +  φ 










2

2

o

f)f(k2

E)o(k
, ...(13) 

 ψ (r,f) = φ [<EE*>] –φ 









2

2

o

f)f(k2

E)o(k
<< 

'

0
∈  (f) ...(14) 

Here, f is the dimensionless beam-width parameter, defined below in eq. (15) and k 

is the propagation constant defined below in eq. (16).  

Here, in eq. (14), < > represents time average of many cycles. Using the WKB 

approximation and following the procedure used by Sodha et al.8 and Akhmanov et al.9, 

one can write – 

 E (r,z) = A (r, z) 
2

1

)f(k

)o(k








exp [–ik (f) z],  ...(15) 
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 Where,  k(f) = 
1

' 2

0
( )f

c

ω
 ∈   and k(o) = 

1
' 2

0
( 1)f

c

ω
 ∈ =  . ...(16) 

In wave equation  

 ∇2E +
2

2

c

ω
∈E = 0 

values of ∈ and E can be substituted from Eqs. (12) and (15), which leads to 

parabolic equation as – 

 – 2ik (f) 
2

2
2

c
A

z

A ω
+∇+

∂
∂

⊥ ψ (r, f) A = 0 ...(17) 

Putting 

A (r,z) = Ao (r,z) exp [-i ∫ k(f)dS] 

and separating real and imaginary parts, one gets – 

 2 








∂

∂
+

∂

∂
=





∂

∂
+

∂

∂

r

A

r

1

r

A

A)f(k

1

r

S

z

S o

2

o

2

o

2

2

+ 
22

2

c)f(k

ω
ψ(r, f) ...(18) 

and                                    








∂
∂

+
∂
∂

+
∂

∂

∂
∂

+
∂

∂

r

S

r

1

r

S
A

r

A

r

S

z

A
2

2
2

o

2

o

2

o = 0 ...(19) 

The solution of Eqs. (18) and (19) can be written as – 

 
2

2

o2

o
f

E
A =  exp 








−

22

o

2

fr

r
 ... (20) 

 S = 
z

r 2
β(z) + η(z) 

 β = 
z

f

f

1

∂
∂

 

where β corresponds to the inverse radius of curvature of the wave front and rf is 
the width of the main beam in the medium. 
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Ohmic nonlinearity 

When the time duration of laser beam is longer than a temperature relaxation time, 

Ohmic heating of electrons becomes important. Solving the equation of motion for the 

oscillatory electron velocity due to the electromagnetic wave, we get – 

 v  = ( )ων−
ω

i1
mi

Ee
 ...(21) 

The component of v in phase with E  causes electron heating at the rate –
2

e
v.E

*

= e2EE*ν / 2mω2 . In the steady state, this rate is balanced by the power loss via thermal 

conduction and collisons with ions and neutrals – 

 – ∇.  δν+






 ∇
χ

2

3
T

N
e (Te–To) = 2

*2

m2

EEe

ω
ν

 , ...(22) 

where χ/N = δν ,
v2

th  =2 (m/mi) for electron – ion energy exchange collision. 

2

thv = ( )2
1

o m/T2 is the electron thermal speed and Te is the nonlinear field-

dependent electron temperature and we may define characteristic times for thermal 

conduction and collisional energy transfer, τcon and τcoll as – 

 τcon ~ 2

th

2

o

v

rν
 and τcoll ~ (δν)

-1 

where ro is the characteristic scale length of variation of EE
*. For τcoll>> τcon i.e. 

2

th

o

2

v

r δν
<< 1, one may ignore the second term in eq. (22). 

Then  

 – 







∂
∂χ

∂
∂

eT
rN

r
rr

1
= 

2

*2

m2

EEe

ω
ν

 ...(23) 

For a beam of finite extent, Eq. (23) can be solved analytically only in the weak 
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nonlinearity approximation : Te = To + ∆T, ∆T << Ti. On integrating Eq. (23) with limits 0

to r and using the paraxial ray approximation, viz.  

 

2

2 2
0

r
2 

r f

2 2

0

r
e  1 - 

r f

−

≅  

Eq. (23) reduces to  – 

 Te – To ∼  – 
2 2 2 2

12 2 2

( )
  

8 ( )

o

th

e k o E r
c

m k f f

ν
ω ν

+ . ...(24) 

Employing pressure balance, ∆ Ne = – N 
oeo TT

Te

+
∆

 

 =
( )

o

oe

T2
TTN −−

, Eq. (24) can be recasted as – 

 Ne – N = ∆ Ne = 2

o

2

th

2

22

o

22

f)f(kTvm16

rE)o(kNe

ω

ν
 – 

o

1

T2

Nc
 ...(25) 

Usually c1 is not important in the case of small nonlinearity, however, for large 

nonlinearity and in the phenomenon of penetration of laser beams in overdense plasma, c1

plays significant role. c1 can be evaluated by assuming that for all practical purpose Ne ≈ N 
at r = ro; hence – 

 C1 = + 2

o

2

th

2

2

o

2

o

22

o
f)f(kTm16

rE)o(ke
T2

νω

ν
. ...(26) 

On using Eq. (25) for electronic concentration, the expression for the dielectric 

constant is given by – 

 ∈ = ∈o + .
r

r
1

f)f(kTvm16

)z(WrE)o(ke)o(

2

o

2

2

o

2

th

2

2

o

2

o

222

p









−

ω

ν

ω

ω
 ...(27) 

Eq. (27) can be easily put in the form of Eq. (12) and using paraxial – ray 

approximation, 
'

0
∈ (f) and ψ (f) can be written as – 
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2 2 2 2 2

'

2 2 2 2

( ) ( ) ( )
( )

16 ( )

p o o

o o

th o

o e k o E r W z
f

m T k f f

ω ν
ω ω ν

∈ =∈ + , ...(28) 

and  

 ψ (f) = – r2 
2 2 2 2

2 2 2 2

( ) ( ) ( )

16 ( )

p o

th o

o e k o E W z

m T k f f

ω ν
ω ω ν

, ...(29) 

 = – r2 

)f(k

)o(k

f4

E)o(

22

2

o

2

p

ω

αω
 w(z), 

Where α = 
4

th

22

22

vm2

e

ω

ν
. Let us substitute the value of 

2

oA and S from Eq. (20) and 

ψ (r, f) from Eq. (29) in Eq. (18).  Now equating the r2 coefficients of both sides of 

resulting equation (followings the WKB approximation) and substituting the value of β, 
one obtains – 

 
2

2

dz

fd
 = 

34

o

2 fr)f(k

1
  –  

2 2 2 2 2

2 2 2 3

( ) ( )

16 ( )

po o o

th o

e k o r W z E

c m T k f f

ω ν
ω ν

. ...(30) 

The self trapping condition may be written as – 

 

2 2 2 2

2 2 2

po o ocr

th o

e E

m T

ω ν
ω ω ν

 = 
4

o

2

2

r

c

ω
. ...(31) 

The critical power of the beam for self-focusing is thus – 

 Pcr = 
2

ocr

2

o Er
8

c
 

1
2 2 2 2 2

2 2 2
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o
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e E
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where 

or

c

ω
 << 1 . The initial condition on f are f(i = ν) = 1 and df/dz |z = 0 

corresponding to an initially plane wave front. The first term on the right hand side (RHS) 

of eq. (30) corresponds to diffraction divergena and second term corresponds to 

convergence due to nonlinearity.  

Equation (29) is valid for all profiles of unperturbed electron density. However, for 

the safe of explicitness, we have solved it numerically for a linear profile, viz., 

W(z) = (1+Bz) 

 

Fig. 1:  Variation of beam width parameter f and axial intensity of the beam as a 

function of distance of propagation for ro ωωωω/c = 30, 
2

2

po
ω

ω
= 0.5, 2

oEα = 4.0,  B 
c

ω
 

2

or = 

5.0, To = 10
5 K, νννν = 5 × 1010 s-1 and ro = 300 µµµµm. 

Fig. 1 shows the variation of axial wave intensity 
















α=

22

1

2

1

2

o

f)f(k

)o(kEQ  as a function 

of distance of penetration into the plasma. As a competition of self-focusing and 

diffraction effects, the intensity varies in an oscillatory manner. As the beam penetrates 
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in the plasma, the axial dielectric constant decreases, and one expects a turning point 

where 
'

o
∈ (f) = o. However, the present treatment is not applicable around this point. A 

beam of higher power penetrate much deeper in the plasma 

CONCLUSION  

A Gaussian laser beam propagating through a collisional plasma causes differential 

Ohmic heating of electrons. In a collisional plasma, the redistribution of the charge carriers 

is limited by thermal conduction only when ( ) 1r 2

ei

2

th

2

o <<ννδ .The electron plasma 

temperature increases with increasing flux. Moreover, with increasing temperature, the 

electron-ion collision frequency νei decreases, and thermal – conduction losses become 

stronger, leading to periodic self – focusing of the main beam. In the case of conduction 

nonlinearity the critical power of the beam for self-focusing does not change, when power 

of the beam p > pcr, the medium behaves as an oscillatory wave guide. For p > pcr the 

beam, initially plane, starts converging but after appreciable propagation, the axial 

inhomogeneity of the medium makes the influence of diffraction divergence so effective as 

to diverge the beam much before the focus is reached.  
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