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Abstract 
Background: Now a day, the processing of genomic data is growing tremendously and some concerns of outsourcing the genomic data 

are lack of security as it contains sensitive information about the individuals, computation time, and execution time is high due to the 

storage size. 
Objective: Traditional cryptographic techniques require an unencrypted genomic dataset for computations. Here, there will be no 

control over the genomic data that is being processed in plaintext. To solve this, Homomorphic Encryption (HE) techniques are 

used for computation that takes place on encrypted data. This will give the same result as if it was processed in the plaintext. 

Methods: In this paper, an encryption technique based on homomorphic encryption is used to secure genomic data for 

computation by comparing the techniques to achieve less execution time. 

Results: The results obtained prove that BFV is more secure as it cannot be identified by intruders. It is fast when compared to 

other homomorphic encryption techniques. 

Conclusion: The comparative study shows that BFV scheme is more efficient and gives quantum security. 
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Introduction 

Genomic data processing is very sensitive as it reveals the individual's health information during the data sharing stage. It 

needs some privacy/security solutions using some cryptographic techniques. When the encryption method is applied to data 

during data sharing on the cloud using traditional cryptography, data has to be decrypted before using the data. A trusted third 

party may use the data illegally. Genome sequencing in speed led to an era in growth rate. The whole genome sequencing cost 

will reach $1 k in the future, which allows the individual to access large genome datasets on the internet. There are several 

popular projects like PGP and Hap Map that show genotypic information in public databases so that the information will be 

publicly available and accessible. Genome is used in a variety of applications that includes research purposes, the healthcare 

sector, and forensics. The data can be misused during process execution, leads to violating the data privacy. Even when explicit 

identifications like name, address, etc. are taken off from the dataset, one can easily find the identity, so data should be always 

considered with care [1-5]. 

However, there are various researches done to protect the genomic data using traditional cryptographic techniques. 

Specifically, homomorphic encryption is used, which allows processes to be carried out on the encrypted text so that no one 

can reveal the information to the third-party/researcher. In the below sections, BFV (Fully homomorphic encryption) is 

discussed in detail with approximate results [6-10]. The publicly available database is used for research purposes. Databases 

are not taken as plaintext and are encrypted for computation, as they may leak information. A few sequences are considered 

here because a small piece of DNA is enough to find the personality of an individual while sharing in the cloud. To achieve the 

proposed work, the BFV cryptosystem and its characteristics are given below [11-15]. 
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 Efficiency: Homomorphic Encryption (BFV) is based on RLWE, which is more powerful than a hard solution 

designed against quantum computers attack. 

 Attacks resistance: Material resources are considered and a very high number of parameters of RLWE offer high 
security. 

 Unpredictable: Coefficients of random polynomial public and private keys are used for BFV cryptosystems 
to become unpredictable and cannot be based on an adversary. 

 

 Firstly, Brakerski Fan Vercauterian (BFV) was implemented and is compared with Partially Homomorphic Encryption 

(PHE). After analyzing the results, duplicate elements are encrypted several times, which leads to high computation time. To 

overcome the issue, a HaskMap structure is used with (key, value). The proposed method had many advantages; some of them 

are storage efficiency, high retrieval of data, and indexing of the genomic data position for query and both the encryption and 

decryption process. Additionally, BFV was compared to PHE, which performs all the possible operations on encrypted data so 

that plaintext is not revealed. PHE is not efficient during query processing and computation time. It is also not secure when 

compared to fully homomorphic encryption. 

 

The step-by-step process of the contribution is as follows: 

 

 Genomic data is considered here as an input. Dataset are available online publicly. 

 In order to provide security to the outsourcing genomic data, data need to be encrypted using Homomorphic 

encryption techniques. 

 Here, homomorphic encryption techniques are compared and a final solution on efficiency is concluded. 

 

The execution time is calculated to check computation overhead and privacy concerns. Here, BFV and BGV are evident and 

securely violated by all partially homomorphic encryption techniques. 

 

Materials and Methods 

HE 

The cryptosystem performs an operation on the encrypted data instead of the plaintext. All the computations are performed 
on encrypted data. 

 

Let message space (M, 0) be finite. Let the parameter of security be σ. M is massage used in homomorphic encryption is 

quadruple of probabilistic (K, E, D, A) for polynomial operation have some functionalities, they are as follows  

 

Generation of key value: Let 1σ be input for algorithm K gives output as key pair (ke, kd)=k ∈ K, ke, kd=k ∈ K, where K 

identifies key space. 

Encrypting the message M: Input 1σ, ke and m ∈ M, E is encryption will give output as cipher text c ∈ C.c ∈ C, where C is an 

encrypted data space (cipher text). 

Plaintext formation (decryption): Deterministic D is the decryption algorithm. 1σ, k and an element c ∈ C are taken as input, and 

its output is an element in M (message) for all m ∈ M it holds. If c=E(1σ, ke, m) then Prob(D(.k.c)≠m) is negligible, i.e.) it holds 

Prob(D(.k.c)≠m) ≤ 2−σProb(D(.k.c)≠m) ≤ 2−σ. 

Property for homomorphic encryption scheme: Let A be an algorithm with input values 1σ, ke and elements c1, c2∈C and its 

output be c3 ∈ C, for all m1, m2 ∈ M it holds, if M3=m1.m2m3=m1.m2 and C1=E(1σ, ke, m1) and C2=E(1σ,ke,m2) then 

Prob(D(A(1σ,ke,C1,C2)))≠M3 is negligible. Homomorphic algorithm with the additional property gives an efficient algorithm to 

compute N encryption for two messages with a public key. If message M is additive, then the message is known as additively 

homomorphic encryption, where algorithm A is called Add. If message M is multiplicative, then it is called multiplicative 

homomorphic where algorithm A is called Mult. Homomorphic is efficient and crucial that the size of cipher text is polynomially 

bounded in σ (security) in repeated computation. HE is sometimes known as Partial HE (PHE), Somewhat HE (SWHE) and Fully 

HE (FHE). 

PHE: It takes only one operation at a time either addition of two cipher texts or multiplication of two cipher texts. Some 
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of the encryption schemes are described below. 

RSA: RSA is the best and widely known deterministic multiplicatively homomorphic encryption algorithm on 

M=(Z/NZ,.)M=(Z/NZ,.). Where N is product of two large primes. 

Cipher text C=(Z/NZ,)C=(Z/NZ,) 

Key K={(ke, kd)=((N, e), d) | N=pq, ed ≡1 mod φ(N)} 

Encryption of message M, m∈M is given as Eke(m)= me mod N 

Decryption of cipher text c, 

Eke(m)=c ∈ C, need to be computed by Dke, 

kd(c)=cd mod N=m mod N. 

The encryption of the product of two messages can be efficiently computed by multiplying the corresponding cipher texts, 

i.e.). Eke (m1.m2)=(m1.m2) e mod N=(m1e mod n) (m2e mod N)=Eke(m1). Eke(m2) where m1, m2∈M. 

Therefore, algorithm for Mult can be easily realized as follows, Mult (Eke(m1), Eke(m2))=Eke(m2).Eke(m2) 

Usually in RSA and other cryptosystems are faced with difficulty factoring the security parameter σ is the bit length of N. For 

instance, σ =1024 is a common security parameter. 

 

Elliptic Curve Cryptography (ECC): It is a public key cryptography approach based on the algebraic structure of elliptic curves 

over finite fields. There are two types of finite fields where the elliptic curve is defined 

 Binary field and prime fields. Prime fields Fp where p is a large prime number 

 Binary fields F2 m. 

An elliptic curve over finite field GF (p) is the set of points described by the equation: Ep (a,b):y2 =x3+ax+b mod p 

Where 4a3
 
+27b2 ≠0, p is a prime number. 

The security of ECC based cryptographic protocol is based on the Elliptic curve discrete logarithm problem (ECDLP). The 

ECDLP can be defined as the problem of finding the scalar k such that Q=kP given Q and P (generator point). 

Goldwasser-Micali scheme: The Goldwasser-Micali scheme is an example of a probabilistic, additively homomorphic 

cryptosystem on M= (Z/2Z, +) M= (Z/2Z, +) with the cipher text space C=Z= (Z/NZ) C=Z= (Z/NZ)
*
 

Where N=pq N=pq is the product of two large primes. 

K={(ke, kd)=((N, a), (p, q)) | N=pq, a ∈(Z/NZ)K=(ke, kd=N, a, p, q | N=pq, a ∈ (Z/NZ)
*
:(ap)=(aq)= 

−1}ap= aq= -1} 

Since this scheme is probabilistic, the encryption algorithm gets as additional input a random value r ∈ Z. Let us define Eke 

(m,r)=amr2 mod NEkem, r=amr2 mod N and D(ke kd)=0D(ke kd)=0 if c is a square and=1 otherwise. 

 

The following relation therefore holds good: 

Eke (m1, r1).Eke (m2, r2)= Eke (m1+m2, r1r2) Eke (m1, r1). Eke (m2, r2)= Eke (m1+m2, r1r2) The algorithms Add 

can, therefore, be efficiently implemented as follows: 

Add (Eke (m1, r1), Eke( m2, r2), r3)= Eke (m1, r1).Eke (m2, r2).r23 mod N= Eke (m1 + m2, r1r2r3) Add (Eke (m1, r1), 

Eke (m2, r2), r3)= Eke (m1, r1).Eke (m2, r2).r32 mod N= Eke (m1+ m2, r1r2r3) In the above equation, r23 mod Nr32 

mod N is equivalent to Eke (0, r3) Eke (0, r3). 

Also, m1, m2 ∈ Mm1, m2 ∈ M and r1, r2r1, r2,r3 ∈ Z.r3 ∈ Z. 

Note that this algorithm should be probabilistic, since it obtains a random number r3r3 as an additional input. 

 

Benaloh’s scheme: Benaloh is a generalization of the GM scheme that enables one to manage inputs of l(k)l(k) bits, k being a 

prime satisfying some specified constraints. 

Encryption is similar as in GM scheme (encrypting a message m ∈{0,….,k−1}m ∈{0,….,k-1} is tantamount to picking an 

integer r ∈ Z
*
nr ∈ Zn

*
 and computing c=gmrk mod n),c=gmrk mod n. However, the decryption phase is more complex. If the 

input and output sizes are l(k)l(k) and l(n)l(n) bits respectively, the expansion is equal to l(n)/l(k)l(n)/l(k). The value of 

expansion obtained in this approach is less than that achieved in GM. This makes the scheme more attractive. Moreover, the 

encryption is not too expensive as well. The overhead in the decryption process is estimated to be O(k−−√.l(k))O(k.l(k)) for 

pre-computation which remains constant for each dynamic decryption step. This implies that the value of k has to be taken 

very small, which in turn limits the gain obtained on the value of expansion. 

Okamoto-Uchiyama scheme: To improve the performance of the earlier schemes on homomorphic encryption, Okamoto and 

http://www.tsijournals.com/


www.tsijournals.com | August-2022 

 
 

    4 

 

 

Uchiyama changed the base group G (Okamoto and Uchiyama, 1998). By taking n= p
2
qn= p

2
q, p and q being two large prime 

numbers as usual, and the group G= Z
*
p

2
G= Zp

2*
, the authors achieve k=pk=p. The value of the expansion obtained in the scheme is 

3. One of the biggest advantages of this scheme is that its security is equivalent to the factorization of n. However, a chosen-cipher 

text attack has been proposed on this scheme that can break the factorization problem. Hence, currently it has a limited 

applicability. However, this scheme was used to design the EPOC systems, which is accepted in the IEEE standard specifications 

for public-key cryptography (IEEE P1363). 

Paillier scheme: One of the most well-known homomorphic encryption schemes is due to Paillier. It is an improvement over the 

earlier schemes in the sense that it is able to decrease the value of expansion from 3 to 2. The scheme uses n=p.qn=p.q with gcd(n, 

ϕ(n))=1 gcdn, ϕn=1. As usual p and q are two large primes. However, it considered the group G= Z
*
n2G= Zn2

*
 and a proper 

choice of H led to k=l(n)k=l(n). While the cost of encryption is not too high, decryption needs one exponentiation modulo n2n2 to 

the power λ(n)λ(n), and a multiplication modulo n. This makes decryption a bit heavyweight process. The author has shown how 

to manage decryption efficiently using the famous Chinese Remainder Theorem. With smaller expansion and lower cost 

compared with the other schemes, this scheme found great acceptance. In 2002, Cramer and Shoup proposed a general approach 

to achieve higher security against adaptive chosen-cipher text attacks for certain cryptosystems with some particular algebraic 

properties. They applied their propositions on Paillier’s original scheme and designed a stronger variant of homomorphic 

encryption. Bresson proposed a slightly different version of a homomorphic encryption scheme that is more accurate for some 

applications [17-18]. 

 

Key generation: 

Step 1: n= pq, the RSA modulus  

Step 2: λ=lcm (p−1, q−1) 

Step 3: g є Z /n2 Z s.t. n|or dn 2 (g) 

Step 4: Public-key: (n, g), secret key: λ, μ 2. 

Encryption of message m: 

Step 1: m є {0, 1... n−1}, a message  

Step 2: h єR Z/n Z 

Step 3: c=gm h n mod n2, a cipher text 3. 

Decryption of c: m=L (cג mod n
2
) L (gג mod n

2
)

−1
 mod n 

The constant parameter, L (gλ mod n
2
)

-1
 mod n or L (gα mod n

2
)

-1
 mod n where g=1+ n mod n

2
 can also be recomputed once 

for all. 

Fully homomorphic encryption: Fully Homomorphic Encryption (FHE) allows all the possible operations at a time. In 2009, 

Gentry described first plausible construction of a fully homomorphic cryptosystem that supports both addition and multiplication. 

Gentry's proposed FHE consists of various steps. 

 

 It constructs a somewhat homomorphic encryption to evaluate low-degree polynomials on encrypted data. 

 It describes decryption process so it can be defined as low-degree polynomial. 

 Finally, bootstrapping is applied to form FHE scheme. 

 

This scheme is too used to evaluate polynomials of high-degree using decryption that can be expressed in polynomial of low-

degree. Once the polynomial degree is evaluated by the scheme that exceeds the degree of decryption polynomial by factor 

of two then the process is known as boots trappable and it can then be converted into a FHE. Gentry defined a secret key; even 

private key is in short basis of random ideal lattice. Generating the public and secret bases pair with right distributions for 

worst-case to average-case reduction is technically quite complicated. Significant research has been devoted to increase the 

efficiency of its implementation. 

 

A parallel line of work that use lattices in cryptography are back to NTRU cryptosystem. This approach uses lattices for 

cryptographic derivations with efficiency. The structure of lattices is compared to ordinary lattices and found that it makes 

their representation more powerful and faster in computation motivated by the work in. A significant number of works has 

been proposed for efficiency constructions of several cryptographic primitives whose security can be reduced to hardness of 

vector problems in ideal lattices. 

 

Lyubashevsky proposed Ring Learning With Errors (RLWE) assumption that is their ring counterpart of Regev 

Learning With Errors (LWE) assumption. In a nutshell, polynomial assumptions are over ring of the form (ai, aid+ei) 
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ai,ais+ei, where s is the random secret ring ai is distributed uniformly and randomly in ring and ea. is small ring, it is 

impossible for an adversary to find the sequence of samples from random pairs of ring elements. Authors have shown that 

assumptions are efficiently reduced to worst case for hardness of short vector problems on ideal lattices. They have also 

shown on how to construct an efficient ring counterpart to Regev's public key encryption technique, as well as counterpart to 

identify based encryption scheme presented in by using sampling techniques in. Scheme described in is very elegant and 

efficient as it is not dependent on any complex computations over ideal lattices. 

 

Brakerski and Vaikuntanathan questioned that whether the approaches explained above can effectively exploit so 

benefits of both approaches can be achieved at the same time, namely functional powerfulness in one hand, and simplicity and 

efficiency in another hand. They have constructed a somewhat homomorphic encryption scheme based on RLWE. Somewhat 

homomorphic encryption scheme is constructed based on RLWE. The scheme inherits simplicity and efficiency as well as 

worst case relation to ideal lattices. Moreover, scheme is key dependent message security; it can securely encrypt polynomial 

function using its own secret key. Authors argue that all known constructions of fully homomorphic encryption used 

bootstrapping technique that enforces the public key of scheme to grow liberally with Kaushal depth of evaluated circuits. 

The drawback is usability and efficiency. However, size of public key can be made independent of circuits depth of the 

somewhat homomorphic encryption scheme can securely encrypt using secret key. 

 

In order to cocaine the noise problem, Henry introduced FHE in 2009; bootstrapping mechanism is introduced to 

increase with each operation (addition or multiplication). Decryption only will face the impact of noise level exceeds the 

threshold value set during the process. Other patterns like BFV are developed by Brakershi, Gentry and Vaikuntanathan, 

followed by BFV. According to the consortium taking place in Europe, BFV is best method for practical homomorphic 

encryption. 

 

They have committed the circular security with respect to the representation of secret key as a ring-based element where 

bootstrapping requires circular security with respect to bit-wise secret key. Since there is no prior work that studies a possible 

coexistence between somewhat homomorphic encryption with circular security. 

 
Learning With Error over ring (RLWE): Generalization of Learning with Error is known as Ring Learning With 

Error (RLWE). RLWE is introduced in. It is the new homomorphic encryption algorithm that proves the efficiency of FHE. The 

polynomial tuples are described in (𝑎𝑖(x), 𝑏𝑖(x)) where the coefficient of 𝑎𝑖 is uniformly chosen from 𝑅𝑞 𝑎𝑛𝑑 (𝑥) 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

𝑎𝑠 (𝑥) =(𝑥) ∙𝑠𝑖(𝑥) + 𝑒𝑖(𝑥)∈ 𝑅𝑞 Where s ∈𝑅𝑞 is a secret polynomial. 

Brakerski Fan Vercauteren (BFV): Brakerski Fan Vercauteren name comes from the founder’s name Brakerski, Jun Feng Fan 

and Frederik Vercauteren. BFV is based on RLWE, introduced in 2012. It is a fully homomorphic encryption and has different 

phases and are discussed below. Only the addition operations are considered here and implemented without a bootstrapping step. 

The detailed description of the different phases is as follows, 

Setting 

Set of parameters considered are 𝜆, n, q, t, 𝜎. 

Key generation: In key generation, secret key SK is represented by the polynomial and the coefficient of polynomials is drawn 

from 
χ 
key

.
 

𝑆𝐾=𝑠 

Public key PK is represented as a pair of polynomials (p0,p1), 

𝑃𝐾 = (𝑃0, 𝑃1) = ([−(𝑎 ∙ 𝑠 + 𝑒)]𝑞, 𝑎) 

Where, 

a ←𝑅𝑞←𝜒𝑒𝑟𝑟 

Encryption Method: Message m is encoded for integer t (where t≥2) by calculating the cipher text c obtained from a pair of 

polynomials c0, c1 are as follows, 

𝑐
0
=[∆ ∙ 𝑚 + 𝑝

0 ∙ 𝑢 + 𝑒1] ∈ 𝑅𝑞 

𝑐1=[𝑝1 ∙ 𝑢 + 𝑒2]  ∈ 𝑅𝑞 

Where, 
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∆=⌊𝑞 ∕ 𝑡⌋ 

u← 𝜒𝑘𝑒𝑦; 𝑒1, 𝑒2← (𝜒𝑒𝑟𝑟)2 

Every plaintext is represented in binary format so encoding takes place as a polynomial.  

Decryption method: The decryption took place by obtaining the message m, 

𝑐0 + 𝑐1 ∙ 𝑠=∆ ∙ 𝑚 + 𝑝0 ∙ 𝑢 + 𝑒1 + (𝑝1 ∙ 𝑢 + 𝑒2) ∙ 𝑠 

𝑐0 + 𝑐1 ∙ 𝑠=∆ ∙ 𝑚 + (−(𝑎 ∙ 𝑠 + 𝑒) + 𝑎 ∙ 𝑠) ∙ 𝑢 + 𝑒1 + 𝑠 ∙ 𝑒2 

  

 

m is obtained by performing a scale and round. The important thing is BFV models scalar product. 

BGV: Dealing with integer vectors (whose security is dependent on the hardness of decisional LWE (Learning with Errors) [19]) 

and dealing with the integer polynomials (whose security is dependent on the hardness of the decisional R-LWE (Ring LWE) 

[20]) are two versions of the cryptosystem. BGV is an asymmetric encryption scheme which can be used for the encryption of the 

bits. 

Key generation: In key generation, secret key SK is represented by the polynomial and the coefficients of polynomials are 

drawn from χ key. 

SK=s 

Public key PK is represented as a pair of polynomials (p0, p1), PK=p0, 

p1=-a∙s+eq.t,a  Encryption Method: Encrypt (Plaintext m, Public Key 
Pub): Cipher text c 

Message m is encoded for integer t (where t≥2) by calculating the cipher text c obtained from a pair of polynomials c0, c1 

are as follows, 

 

c0=[m+p0∙u+t.e1]qL c1=[p1∙u+t.e2]qL 

Decryption method: Decrypt (Cipher text c, Private Key Priv): Plaintext m the 

decryption took place by obtaining the message m, c0+c1∙s = m+p0∙u+t.e1+(p1∙u+t.e2)∙s 

c0+c1∙s = m+(-(a∙s+t.e)+a∙s)∙u+t.e1+s∙e2 m=[⌊(c0+c1∙s)qL]t 

m is obtained by performing a scale and round. The important thing is BFV models scalar products. Level shifting operations 

Rescale (Cipher text c): Cipher text c’ 

Homomorphic operations Add (Cipher text c1, Cipher text c2) Cipher text csum 

Mul (Cipher text c1, Cipher text c2): Cipher text cmul (Tables 1-3) 

 

TABLE 1. Shows the time required for the key generation in partially homomorphic encryption. 

 
S 

No. 

Dataset 

  

 ECC Key Generation Time 

Elgamal RSA Paillier GM OU 

1 GCF_000001405.10 0.0714 30.21 64.932 0.0022 0.0807 3.2673 

2 GCF_000001405.11 0.0999 141.17 60.8726 0.0019 0.0191 2.3342 

3 GCF_000001405.12 0.123 140.62 69.784 0.0018 0.0384 4.0897 

4 GCF_000001405.16 0.0602 70.644 132.768 0.0033 0.0881 3.2658 

5 GCF_000001405.38 0.0379 40.802 108.308 0.0029 0.0132 2.6575 

6 GCF_000001405.39 0.0353 12.446 133.119 0.0029 0.0182 4.064 

7 GCF_000001405.40 0.457 160.52 37.502 0.0053 0.1936 3.0981 

TABLE 2. Shows the execution time of the encryption techniques of partially homomorphic encryption. 
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S 

No. 

Dataset 

  

 ECC  Elgamal Encryption Time  

RSA Paillier GM OU 

1 GCF_000001405.10 0.2143 0.1324 0.5213 9.87688 0.2104 0.3454 

2 GCF_000001405.11 0.2763 0.089 1.2136 78.5646 0.0697 2.3435 

3 GCF_000001405.12 0.5203 0.1298 1.1045 27.5278 0.113 1.654 

4 GCF_000001405.16 0.1895 0.0454 0.4629 10.2748 0.083 0.4681 

5 GCF_000001405.38 0.1452 0.0464 0.4496 19.3251 0.096 0.4813 

6 GCF_000001405.39 0.1513 0.1621 0.9864 10.3673 0.0379 1.3984 

7 GCF_000001405.40 4.5861 0.2129 0.4904 76.5479 0.451 2.6834 

 
TABLE 3. Shows the execution time of the decryption techniques of partially homomorphic encryption. 

 

S 

No. 

Dataset ECC Elgamal Decryption Time 

RSA Paillier GM OU 

1 GCF_000001405.10 0.05247 0.1323 0.5213 9.8768 0.2104 0.9843 

2 GCF_000001405.11 0.0493 0.089 1.2136 78.5646 0.0697 0.892 

3 GCF_000001405.12 0.0999 0.1298 1.1045 27.5278 0.113 1.2671 

4 GCF_000001405.16 0.0434 0.0454 0.4629 10.2748 0.083 1.8765 

5 GCF_000001405.38 0.0488 0.0464 0.4496 19.3251 0.0964 0.9675 

6 GCF_000001405.39 0.0542 0.1621 0.9864 10.3673 0.0379 0.7654 

7 GCF_000001405.40 0.4358 0.2129 0.4904 76.5479 0.451 10,638 

 

 

 

 

Results and Discussion 
Implementations are carried out using Python on a Linux OS based Lenovo computer with 8 GB RAM memory using an 

Intel Core i%-6300U-2.5 GHZ CPU. The position focused is retrieved from fasta record with python libraries. Therefore, all 

the positions are coded in binary form and represented as the degree of polynomials given during the setting phase of BFV. In 

order to increase the speed of the execution time, 24 threads are used. Adding of two cipher texts for retrieving information 

about positions when it is queried for genomic data. For the BFV method, coefficients of the polynomials (e, e1, e2) have binary 

numbers as value. Security level of encryption is depending in λ as a security parameter fully based on values (n, q and 𝜎). 

Considering n value as a large number gives high security as it is difficult to break by intruders but have high execution time and 

require hardware resources to achieve best results. No procedure to be carried out for the exact values to be considered for the 

parameters (Table 1). Shows the key generation time for partially homomorphic encryption in that Paillier’s cryptosystem is 

efficient when compared to other techniques [21-23]. 

 

In Tables 2 and 3, the execution time taken by the genomic data for encryption and decryption of partially homomorphic 

encryption techniques are shown. Table describes that the Paillier’s has efficient and secured technique. The Paillier’s 

cryptosystem is then compared with the fully homomorphic encryption techniques shown in figures. Data encrypted using 

fully homomorphic encryption cannot be cracked even by quantum computers. Large sets of genomic data need to be 

considered for more comparison between the fully homomorphic encryption with considerable execution time in future for the 

effective outsourcing of data with high security guarantees. In fully homomorphic encryption techniques, BFV and BGV is 

compared and in (Table 4). Key generation of the genomic data is shown with results. The BFV has efficient time when 

compared to BGV. 

 

The encryption process applied on the BGV and BFV are shown in (Table 5). The BFV scheme is efficient with less 
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execution time when compared to the BGV. The security of BFV is also more secured when compared to the BGV. In Table 6, 

decryption process time is analyzed and concluded that the BFV is more efficient than BGV. The integrity of the BFV is more 

secure and efficient than BGV (Figure 1). Shows the performance evaluation of the BFV and BGV. The BFV has very less 

execution time with high security. In Figure 2, the comparison diagram is explained. In that the BFV, BGV, ECC, Elgamal, 

RSA, GM and Paillier cryptosystem are compared and the results prove that the BFV of integer value as input is more efficient 

and accurate that other techniques. Much research is still needed for better performances without compromising safety and 

efficiency. Good efficiency and robustness of the proposed technique is demonstrated by comparing BFV scheme with other 

homomorphic encryption techniques. The finding has shown that execution time of BFV is faster than the other cryptosystem 

shown in (Figure 4). For n= 64, λ=64, Approximately, BFV is 4 times stronger than that of the PHE. Speed of operation is 

higher in BFV as it reduces the complexity by using the polynomials. Here, complex process and execution time of the 

systems infer that the BFV model is strongest against the attacks occurred by the intruders when compared to the PHE. BFV 

scheme for genomic positions or data gives the high security and throughput shown in Figure 3. 

 

TABLE 4. Shows the execution time of key generation. 

S 

No. 

  

Dataset 

  

Key Generation 

Time 

BGV FV 

1 GCF_000001405.10 0.000292 0.000787 

2 GCF_000001405.11 0.009717 0.000808 

3 GCF_000001405.12 0.011869 0.000763 

4 GCA_000001405.16 0.00044 0.091384 

5 GCF_000001405.38 0.000386 0.00079 

6 GCF_000001405.39 0.000274 0.000736 

7 GCF_000001405.40 0.066838 0.0007 

 

TABLE 5. Shows the execution time of the encryption techniques of partially homomorphic encryption. 

 

 

TABLE 6. Shows the execution time of the decryption techniques of partially homomorphic encryption. 

S 

No. 

Dataset 

 

Decryption Time 

BGV FV 

1 GCF_000001405.10 0.039033 0.015965 

2 GCF_000001405.11 0.014338 0.003882 

3 GCF_000001405.12 0.007928 0.005997 

4 GCA_000001405.16 0.01216 0.034093 

5 GCF_000001405.38 0.007729 0.02761 

6 GCF_000001405.39 0.021367 0.003477 

S 

No. 

Dataset 

 

Encryption Time 

BGV FV 

1 GCF_000001405.10 0.197006 0.4297 

2 GCF_000001405.11 0.718092 0.788259 

3 GCF_000001405.12 0.488513 0.715013 

4 GCA_000001405.16 0.982025 0.000742 

5 GCF_000001405.38 0.796891 0.612095 

6 GCF_000001405.39 0.165044 0.392338 

7 GCF_000001405.40 0.270102 0.660797 
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7 GCF_000001405.40 0.049878 0.021504 

 

 

FIG.1. Comparison results of partially homomorphic encryption techniques. 

 

 

FIG.2. Execution time of BGV and FV. 

 

 

FIG.3. Comparison chart of homomorphic encryption techniques. 

Conclusion 

Asymmetric key cryptosystems are used for outsourcing the genomic data for the computation purposes. Along with public key 

cryptosystems, homomorphic encryption is applied to achieve efficiency, security/privacy, data availability and 

confidentiality. The execution time is faster in both encryption and decryption operations. Compared to PHE, the execution 

time for the BFV algorithm always remains large. Particularly by increasing the degree of the polynomial, the BFV algorithm 
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had less processing time when compared to other encryption techniques. The security of PHE is not ensured as it is more 

vulnerable to most of the attacks by intruders. Still the system needs improvements in finding prime numbers and large datasets. 

The cloud is not safe for storage and sharing due to third party issues. In future block chain is replaced instead of cloud storage. 
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