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ABSTRACT

In this paper, we propose novel continuous nonconvex as well as lifted
discrete formulations of the notorioudly challenging class of job-shop
scheduling problems with the objective of minimizing the maximum
completion time. In particular, we develop an RLT-enhanced continuous
nonconvex model for the job-shop problem based on a quadratic
formulation of the job sequencing constraints on machines. The tight
linear programming relaxation that isinduced by thisformulation isthen
embedded in a globally convergent branch-and-bound algorithm.
Furthermore, we design another novel formulation for the job-shop
scheduling problem that possesses a tight continuous relaxation, where
the non-overlapping job sequencing constraints on machines are model ed
viaalifted asymmetric traveling salesman problem (AT SP) construct, and
specific sets of valid inequalities and RLT-based enhancements are
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incorporated to further tighten the resulting mathematical program.
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INTRODUCTION

The deterministic job-shop scheduling problem
(JSSP) arisesinmany industrid environmentsand pre-
sentsacdassica combinatorid optimization problemthat
hasprovento behighly challengingto solve. Theextent
of research conducted inthisfield over thelast forty
yearsor so hasmotivated severa surveys, such asthe
survey by Blazewicz et al.M! and the state-of-the-art
review by Jain and Meeran'?. The computational in-
tractability of thisproblemisillustrated by thefact that
the 10-job-machinetest problem FT 10, introduced by
Fisher and Thompson®® in 1963, was provably solved

to optimality for thefirst timeby Carlier and Pinson
morethan two decades|ater in 1989. Although severd
meathematical programming formulationshavebeenpro-
posed for the JISSP sincethelatefifties, little progress
hasbeen redized with thistrend of research, principally
because of the weakness of the underlying continuous
relaxations of the formulated modelsand the tremen-
dous consequent computationd effort required to solve
theassociated pureor mixed-integer programs. Reflect-
ing on the difficulty of the JISSP, Conway et a.™! ob-
served, quiteemphatically, that: “Althoughitiseasy to
state, and to visudizewhat isrequired, itisextremely
difficult to make any progresswhatever toward asolu-


mailto:caoyonghui2000@162.com

2 Study of RLT-enhanced and lifted formulations for the job-shop scheduling problem

BTAIJ, 8(1) 2013

FULL PAPER o

tion. Many proficient peoplehave cons dered the prob-
lem, and dl have comeaway essentialy empty-handed.”

However, recent devel opmentsin solving mixed-
integer programstogether with modern computer ca-
pabilitiesresurrect somehopeinthisdirection and, with
thismotivation, weinvestigatein thischapter severa
new modeling and lifting conceptsfor the ISSPwith the
obj ectiveof minimizingthemaximum completiontime,

Inthesecond part, weintroduce our notation along
with Manne’smodel for thedeterministicJSSP. Inthe
third part, we propose an enhanced continuous
nonconvex mathematica programfor thisproblemusng
the RLT methodology, and investigate an RLT-based
Lagrangiandud formulationthat isfurther enhancedvia
semidefinitecuts. Thefourth part ddinestesand discusses
aglobdly convergent optimization agorithmwhere RLT
formulations play akey rolein providingtighter relax-
ations. In Thefifth part, we proposeenhanced LPrelax-
ationsfor theJSSP based onanovd formulaioninwhich
the non-overl apping job sequencing constraintson ma-
chinesaremodded viaaliftedasymmetrictravdingsdes-
mean problem (ATSP) viewpoint, and varioussetsof vaid
inequalitiesand RLT-lifted constraintsare proposed to
further tighten theresulting representation.

NOTATIONAND SOME EARLY MODELS

Severa mathematical programming formulations
have been proposed for the JSSP. These early works
arereviewedindetail inAppendix A, but wefocushere
onthemost popular and useful model dueto Manne®,
aswell ascertain nonlinear, nonconvex modifications
suggested by Nepomiastchy!™ and Rogers®, whichwill
be exploited using new modeling conceptsand RLT-
based enhancements discussed | ater in this paper.

Notation

Below isasummary of our notation.
e M =Setof mmachines.

e J=setof njobs.
e J,=setof ordered operationsof jobj.

e Dummy operation O that marksthe start (and the
end) of all operation sequencesondl machines.

o J,=Ju{0}
o [r=setof first operations, thet is, thefirst opera-
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tion of eachjobisincluded inthisset.
F" =subset of " thatisto be performed on ma-

chinej , Vi .
e pr=setof last operations, thet is, thelast operation
of eechjobisincludedinthisset.

e E =subsetofthat isto beperformed onmachine..
e T=operationof jobj to be performed on machinei.
e p,=processingtimeof O,

o AJ:{(ilj,izj): Operationisoilj required to immedi-
ately precede operation 0, of job j} =set of con-
junctivearcsthat represent precedence constraints
between (ordered) operationsbelongingtojobj.

e D.={(ij,ij,) - bothjobsj,andj,j,<j,.require op-
erations O, and O, , to be performed on machinei
inadigunctivefashion}

o P(Oij)=set of all operations of job j that precede
operation O,

o S(Oij)=set of al operationsof job | that follow 0,

e T=upper bound on the makespan.

o [lij' Ui,-] =timeinterva for commencing operation O;-
Such lower and upper bounds can be computed

setting b= 2 P and

k05 eP(0;)
>

P .ng')
k0, eP(0;)

o T={setof tripletsof distinctjobindices(j,, j,j,)
suchthat it ispossibleto perform the respective
operations of these jobs in this order on ma
chine/; & M.

Manne’s M odel (1960)

For convenience, and because of thepopul arity of
thisformul ation, we state Manne’smodd for the JISSP,
and refer theinterested reader toAppendix A for ade-
talled chronologica account of dternativeexisting for-
mulationsintheliterature.

Decision variables
o tij:stani ngtimeof

. _ |1 ifoperation jis performed sometime priortooperation j, on machinei

by
”;.-' - T_(P.Rj +

Zo=d
° M0 others, (i, ij,) € D,ie M.

o C = maxjrfj + Dy 70.-_,-— € E} N &,

max L

is the

makespan or the maximum completiontimeof a
schedule,

MinimizeC .

max

(1a)
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SubjecttoC' 21, +p,. VO, €E (1b)
L~ b 2Py ES (.0, ]) € 4 (1c)
920, ¢ 70 vj, # ji cJJEJ‘Lf)(tI.h—rI.h -p,)<0.¥ie M, (i) D, (1d)
ty —ty, + Kz, = py Vie M. (i,.i,) € D, (1¢)
zbinary.t =0 (2f)

whereK isasuitably large number. Theobjectivefunc-
tion (1a) and Constraint (1b) expressthe objective of
minimizing the maximum completion time. Constraint
(1¢) enforcesthe precedence restri ctions between (or-
dered) operationsthat belongtojob j, whereas Con-
straints (1d)-(1€) model the non-overlapping job se-
guencing constraintson machinesviadigunctiverela
tionships. Constraint (1f) enforceslogical binary and
nonnegativity restrictionsonthe problem variables.
Thismodd providesthemost compact formulation
among early models for the JSSP, and was used in
Greenberg’s® B& B agorithm for the job-shop prob-
lem, aswdl asin Balas’*? gpplication of aspecidized
version of thefilter method to the JSSP. Instead of the
discretenon-overlgoping job sequencing congraints (1d-
1e) utilizedin Manne’smodel, Nepomiastchy suggested
thefollwvingm1inear continuous, nonconvex condraints
(t —ty, — Py )t —1, — P, )< 0.Yie M.(#,.ij,) € D,
The probl emwasthen tackled using apendty func-
tion approach that could terminate at alocal, possibly
non-globd, optimum. Inasmilar spirit, Rogersadopted
thefollowing linear-quadratic constraintsto model the

foregoing digunctiverdationships:

@iin — by thy 2 P Vh#JyedieM (2a)
T +r1._',.] > pm V2 jedJieM (2b)
@iy Pipy =LV E S IEM (20)
=0 (2d)

Here, theroleof the binary variablesused in Manne’s
mode isplayed by the complementarity constraints(2d).
Again, aloca search procedurewasproposed totackle
thisnonlinear, nonconvex formulation.

Valid Inequalitiesin theliterature

Validinequdlities, or cutting planes, arefrequently
adopted to strengthen the continuous rel axations of
combinatoria optimization problems Themaintask here
istoformulate classes of vaidinequditiesthat not only
tightenthemodel representation and hel p significantly
improveits continuousrel axati on-based lower bound,

but al so can be generated efficiently within areason-
ableamount of time. Idedlly, itisdesirableto generate
vaidinegualitiesthat characterizefacets of the convex
hull of feasiblesolutionsto the M1P problem, but judi-
cioudly generated strong cutting planesor lifted ver-
sonsof modd-defining constraintscan aso greetly en-
hancethe computationd performance.

Applegate and Cook!™ offer aninteresting analy-
sisof theeffect of vaidinequditiesonlower boundsfor
both digunctiveand MIPformulaionsof the JSSP. Thar
study includesnewly developed vdid inequditiesaswell
asthose proposed by Baas*? and Dyer and Wol sey!*3.
Weidentify beow certainkey vdidinequditiestha have
been proposedintheliteraturein order to strengthen
theunderlying L Prelaxationsof Manne’smodd.

e Basiccuts(atributed to Dyer and Wolsey!*3 in 1)

Zp iz mmf Zp + Y p,p,.VCCJVieM
N-dreC <), )
o de cutg*y:;
t, > mm/ + Z
eC.j

o Basuccutspl usepslonlll]
;pg.t!, Jz,ZCp,,. + Z  pyp CZ

iy F Z (-z,,)p, .V eJ.CclieM

[i"*’ 7[";}7 * Z (17:%'){]"‘« 7]5‘}');1)0‘

JeCy<k
vkedJ.CcJie M.wimr'e{f‘k =1 y =: max{O./‘.k —l‘j}

e Trianglecuts™:
z. . +Z. . +Z.

Tyt v SLV <y <jyedieM
RLT-BASED CONTINUOUSMODEL AND
LINEAR LOWER BOUNDING PROBLEM

RLT-based relaxation

Adopting the continuousnonconvex digunctivecon-
straints suggested by Nepomiastchy, we can reformu-
late Manne’d*4 model asfol lows, wherewe havede-
finedanew variable g’ . to represent the difference
£, =ty s YIeM TiE . v(ij,.1/,) € D;, for the
sakeof analytica convenience.

Minimize C Max (3a)
SubjecttoC'max = 1, + p;. Vj € E .ieM (30)
b~y 2 Pyys V€TV Jj)e A4, (39)
(&}, — Py )&}, +p,)20,¥ie M.Y({j.i,) e D, ()
g* i =t 1y Vi€ M V(.1 )eD. (3¢)
=10 (3f)

Based on the order of operations O ,and O

— szof]ecézzo/og
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therouting of jobsj, andj,, we can derivelower and
upper boundson the starting time of any operation O,

f'_ Z p")

of the type i C— and

u,=T—

|'|.'ZG;; =8 (O.-',- 3
bound on the optimal makespan. Although T may be
computed viaany adequate heuridic, efficent dgorithms
(such asthe Shifting Bottleneck procedure) should be
preferred, because the tightness of thebounds on the
variablessgnificantly contributesto the strength of the
constraints generated by RLT constructs. Thus, we
deduce box-congraintsof thetype o o < g’ < ﬁj]’
wherecr . = andﬁ =u,; —1I,. Using
these boundr ng constrar nts, we can augment thejob-
shop formulationwith thefollowing RLT bounding-fac-

tor product rel ationships, denoted Fﬁ;: > 0, of thetype:
(‘6 (gz"' ! aj'l,"z) 20, (ﬁl'r B g"l."_? ): =0 !
and (g ~a}, )20, VieM.\¥(j.j,)eD,
Hence, we derivethefollowi ng Manne-based RLT-
enhanced formulation, whichwe denote by JQP.

Py = Py where T is some upper

—H

JQP: MinimizeC (4a)
SubjecttoCmax = 7, + p,, Vj € E; .ie M (4b)
b~y 2 Py e VGG J) € 4 (4c)
(g}, — Py, &, +P,)=20.Yie M.Y(ij.ij,) € D, (4d)
8 =t~ Vie M .VN,.1,)eD, (4e)
F.. =0,¥ie M,¥(j.ij,) € D, (4f)
t=0 (49)

As per the RLT methodol ogy, this reformulated
problem can belinearized to yield alower bounding
linear program by using thefollowing RLT variablesub-
ditutionidentities:

i, =gl 1 .vie MY G.0) e D, ©)

Denoting[.], by the operator that linearizes poly-
nomid functionsunder (5), wehavethat:

(i, < %o * i)
|:F:'Iu_j| 20 J.” i = 2,8 _(ﬂ.-";»"l ’
[_h;’;_r: = 20{.-‘11’: g, iRk _(a-:""'_:' y

TheRLT-basad linear programming relaxation, JLP,
isthus obtained as given below.

JLP: MinimizeC,_ . (6a)
Subjectto Cmax =1, + p,. Vj € E .ieM (6b)
by — b 2 Doy V€T V@G I, 5 )) € 4, (60)
hjj.m = (p, - b, )gj.i_ll._? +p, . Vie MYG.ij,) €D, (6d)
g =t —t, .Vie MY(j.ij,) €D, (60)
h— g (@ +p )-al p VieMYGi)eD,  (80)

_(ﬁi

V]

=28 g’;_
JL/2

iv M

frj.]J. > 20

t.h= @)

Asobvi ousfrom theforegoing derivation, JLPis
indeed alower bounding problem for JOQP. Moreover,
if thesubstitutionidentities (5) are satisfied in an opti-
mal solutionto JLP, thenthissolutiondsoyiedsan op-
timum for JQP.

Remark 1. Observethat the bounding constraints

)'.Vie M.Y(ij,.ij,) € D, (6g)

B —(a } . Vi e M. (ij.ij,) € D, (6h)

of thetype o}, < g}, < B, aenotexplicitly en-
forced in JLP In fact, ‘the bound-factors
g, —a,, z0andf, —g| = 0aredominaedby
thehi gher order bound- fa:tor productsinherent within
| 'F ,'U ] =0,

Remark 2. Notethat ), = Oimpliesthat O, must
precede O, . Similarly, if 5, < 0,then O, must pre-
cedeO,,. Therefore, onceany diunction isresolved,
l.eaj; =0or B, < O0isdetermined, wereplacethe
associated constraintsin (6d)-(6h) by &',
g, <—D,,respectively.

L agrangian dual formulations

= Py, or

Inthissection, weinvestigate abasic Lagrangian
dual rel axation that i sfurther enhanced viasemidefinite
cutsinorder totightenthemode formulaion (seeSherdi
and Fraticeli™ and Sherali and Desail™®).

Basicformulation

Denoting Lagrangemultipliers 2, associated with
(6b), for j€E; .ieM . 7,
(6c)for jeJ .

Gin associated with

(i,j.5,/) € 4; . 1, assodiated with

BioTechnologqy —
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(6d)) Qﬁz“ s 5,-';'1 i GSDCI aw Wl th
(6h)fori e M . (ij,.ij,) € D, wecanformulatethefol-
lowing Lagrangian Dual to JLP, which we denote by

JLD1.
DLDIL:

M{f.\'r'mi:s’-[ﬁ‘(L;r.ﬂ. #.8): Z Z Ay =1LA>07>0.0>0¢>0.5> 0]' (7)
l i=M jeE, i

where

B(A. T . p.5)= ;’l{i;finmm{z Z Ayt + by,

—Z Z TPy —hay £4)
TZZ Z P (Puy Pusy + (P = P8 — M)
+ZZ Z b B8, — (B, =1 )
=1 j1=l;
355 )
=1 j=1j.

(8a)
aibjecttog’ , =1, —1, .¥ie M.V (ij.ij,) € D(8h)
0= h:t_.: = g:u: a;:_.‘: * ﬁ;;i: )= aj‘li: ﬁ.::iz Vi ﬂ;f.‘i"(l_‘]'l.?j'z) = D’ (8C)

I.<t. <u.. VieM,jeJ (8d)

and wherewehaveimposed theimplied boundsonthe
t-variablesin the subproblem constraints (8d) in order
to ensureafinite optimum for thisproblem. For conve-
nience, weshall denotethe objectivefunction expres-
sionin (8a) as“Obj (8a)”.

SDP-enhanced formulation

JLD1 can befurther enhanced by incorporating a
classof SDP-based constraintsinthe spirit of the SDP
cutsintroduced by Sherali and Fraticelli. To thisend,

[ 1
we consider the vector £(1)= |

©nh

],and definethe

o!

T 7 1 S s
followingmatrix 7 ;,,=[e Mz, |, - { s } Vi€ M.(,.ii,) e D,

o
S jia hijjz

Requiring H] to be positive semidefinite, that is

H,, -0, we enforce constraints of the type
oz (gh ). Vie M. Y(ij.ij,) € D,,. Thisleadsto
thefollowing RLT-based, SDP-enhanced, Lagrangian
dua formulation, JLD2, wherethe Lagrangian multipli-
ersassociated with the duali zation of (6€) are denoted

Wf;ﬁr Vie M.Y(ij,.ij,) e D,
JLD2:
4

Mn.\'imi.e\t)(/ T 0.0.6.0): Z Z/l =LA>07>0.u>0,¢>0,8: Or;mn(’snicre’d}(g)
where

O (A7, .. 8) == Minimum [O!)j(Sn) ZZ{ Z T Bl — i+t )(10a)
subject to

(gl < <g (a +f,)-a B FieM5G.j)eD,  (100)
L= u.l.. Vi __‘lff jeJ (100)
Cf_:l;. =g D] = ﬁ' \Vie M. Y(ij.ij,) €D, (10d)

Deflected subgradl ent optimization techniquesare
worthy of explorationin order to solveJLD1and JLD2.
Specialized efficient schemes for evaluating the
Lagrangian dud objectivefunctionsshal be deve oped
inthisresearch. Observethat theobjective coefficients
pertaining to the h-variablesin (10a) are nonpositive
and, therefore, the upper bound on the-variablesrep-
resented in (10b) will bebinding dueto the minimiza-
tion operation. Hence, weshall dsoinvestigate an a-
ternative strategy in which the upper bounding expres-
sionin (10b) is dualized and accommodated within
(10&), whilerequiring (g ;, )* = h; ;. inlieuof (10b). Note
that thelatter constraint can be equivaently replaced
by the convex hull of thisrestriction and (10d). Weshall
exploit thisstructurein designing efficient schemesfor
optimizing such Lagrangian dual formulations.

BRANCH-AND-BOUNDALGORITHM

In thissection, we present aglobally convergent
B& B dgorithmin concert with the RLT-based formu-
lation.

Let Q denotethe hyperrectangle bounding theg-
variables at theroot node of the B& B search tree, and
accordingly, let usdenotetheoriginal problemandits
corresponding lower bounding problem as JOP (Q2) and
JLP (), respectively. Likewise, for any subnodek,
we definethe sub-hyperrectanglen* — o andthecor-
responding problems JQP (©2¥) and JLP (9. Letv[.]
bethevaueat optimality of any given problem[.]. For
convenience, wea so denotethevector of t -variables
by, and similarly weintroducethevectors gand h.

If at any nodek inthe B& B tree, the optimal solu-

tion (7, z, /) obtained for JLP (Q*) satisfiesthevari-

s LBioTechnology
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ablesubstitutionidentities (5), then (7, z) solves JOQP
(Q). Thatis, dl theRLT variablesfaithfully reproduce
the squared variablesthey represent, and afeasible so-
lutiontotheoriginal problemisthereby avail ablethat
achievesthelower bounding value. Asaconsequence,
theincumbent solutionanditsvauefor theorigind prob-
lem, (t*, g*)and C max*, can potentially be updated
asnecessary. Also, if (5) holdsfor JLP(€2) at theroot
node of the search tree, then the solution obtained to
JLP(Q) isindeed optimal to JQP (2), and the algo-
rithmterminates.

Asnoted in Remark 2, g} =20=g\ =p,,
mdsimilarlyg_f,.u_.: < 0= gj____}.] < —p,. Thatis,impos-
ing onesign or another to any variable gj.u.: isequiva
lent to abinary decision that fixestherelative order of

operations O, and O,,0n machinei. Thisresultisat
theheart of thebranchingrule.

Branchingrule

Consider somenodek inthesearchtree. The par-
titioning step isbased on theidentification of thevari-

able g . that createsthehighest discrepancy between
an RLT variable and the term it replaces. We sel ect
g}, suchthat

o .
(i, j,J,) € argmax {pj.m | where

ieM,(f 2 )eD;
¥ 3.5'1..": = h.:'lu": B (gJ‘J_ )2 ‘

Upon the gj.u.: selection of , we create two new
nodes by partitioning QK into
ol = of ~ {g;”_: > p!.;.:} and

E+2 _ ok R 1
Q =Q' N 150 = Dij, I

A forma description of theoverdl B& B dgorithm

isgiven below.

Step O: Initidization Step. Initidizetheincumbent solu-
tion (t*, g*) and its objectivevalue by com-
puting aheuristic solution. (Weused the SBP
[1] for this purpose.) Set k=1 and Q= Q.
Solve JLP (Q2) and denoteitsoptimal solution

by (7. g. ). Determineabranching variable

g, accordingtothebranchingrule. If o}, =0,
then(7, z)isoptimal to JQP; terminatetheal-

BioTechnology —

gorithm after setting ¢(+".g") « (7.7), and
Cmax < v [JLP(Q'I] Otherwi Se, if ‘/Jr] >0,
proceedto Step 1, with theselected node /. _ ;.
Branching Step. Create two new nodes, (k +
1) and (k +2), by partitioning o, into Q!
and asexplained above, and removethe par-
ent node, , fromthelist of activenodes.
Bounding Step. Solve JLP (Q<1) and JLP
(Q*2), Update theincumbent if appropriate.
Select and storeabranching variablefor each
of thesetwo nodes. Increment . . j . 2.
Fathoming Step. Fathom any node k such that
V[JLP(Q* )] = Cmax’ (1- ) by removingitfrom
thelist of activenodes where < ¢ < 1isasped-
fied percentage optimality gap (use: =g ifa
global optimal isdesired). If thelist of active
nodesis empty, stop. Otherwise, proceed to
Step 4.

Node Sel ection Step. Among theactive nodes,
select one (j;, say) that has the least lower
bound, and goto Step 1.

Proposition 1. Theforegoing B& B agorithm (run
with ; = ) terminatesfinitely and producesan optimal
solutionto JQPat termination.

Proof. Theresult directly followsfrom the branch-
ing strategy because there are afinite number of ways
of resolvingthedigunctions.

Notethat the deepest level that can bereachedin

Step 1

Step 2:

Step 3:

Step 4:

mn(n—1)
7

thesearchtreeis , Which correspondstofixing

thesignsof g}, . ¥i=M.v(i,.17j,) D,
LIFTEDATSP-BASED FORMULATIONS

Inarecent paper, Sherali et a.[* have proposed
severd lifting conceptsand RLT-enhancementsfor the
ATSPwith and without precedence constraints, and
have demonstrated thetightnessof theresulting formu-
lationsfor various standard benchmark problems. In
the context of the JSSP, we shall adopt an insightful
modeling approach wherethe scheduling of jobsto be
performed on any machineisviewed asan ATSP prob-
lem, and certain setsof validinequalitiesand RLT-en-
hancements are derived, as established in the sequel
below.

Hn Tudian Jounual
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Decision Variables
o tij:sta”[i ngtimeof

;1 if the operation of job j, immediately precedes the operation of j, on machine:

o =
M0 otherwise, ¥, # j, e J.ie M
° i [1 if the operation of job j, performed sometime prior the operation of job j, on machinei
Sk 0 otherwise, V), # J, e J.ie M

o Cnlax:lnax{rﬁ—pg:O‘_-’E-EE‘}. C max is the

makespan or the maximum completiontimeof a
schedule.

JS-AT SP1:Minimize C max (11a)
subject to Cmax >t +p. + .Z" Py Vi Vi €E ieM (11b)
b3 T“ =LvjeJ.ieM (11¢)
faedy —{.,"| }
> x,, =lvj,eJ.ieM (11d)
Yii +_1~'j‘!j_ =Lvj<jeJieM (11e)
Vii = xé;, VhEj,edieM (1af)
Vi 2X0:Vh 2y eJiieM (119)
Yo, 2x. V% jedieM (11h)
1H = (1I + 17 -1+ x;.!_r.l V(g ds)elieM (11i)
ty, 2t +p; —(l—}':';._»_‘(.! Wp, +uy =1, ).V, = j, eJ.ieM (1)
f, 2t +p+ Z X, Py — =y, ) py, +uy —T +111161)Jc {pg}).‘-?-jl zhedieM (llk)
t;—L; 2D Ve, (i),0,)) € 4; (1an
Sy 2ozl
b2 > ¥, PV, elieM (11n)
t, :iT—; S?l_p“jl edieM (110)
Jaed -
I <4, <u, NjelJieM (11p)
x binary ,y 20 (11q)

Theobjectivefunction (11a), in conjunction with
Congraint (11b), enforcesthedefinition of themakespan
asthemaximum completion time of the schedule. Ob-
servethat Constraint (11b) providesalifted expression
of the makespan constraint formulated in Manne’s
modd, takinginto cons deration the completiontime of
thelast operation of every job and augmenting thiswith
the sum of the processing times of the operationssched-
uled after it. For theremainder of theformulation, in
essence, weexploit theand ogy between the set of job-
operationsto be performed on any machine, augmented
with adummy node 0, andthecitiesto bevisitedinan
ATSPgiven the base city O, in order to sequencethe

operations assigned to this machine via Constraints
(11c)-(11i) and (11q). Constraint (11j) computesthe
start-timesof operationson each machinegiventhey-
variablesandispartidly lifted viaConstraint (11k) as
established in Proposition 2 below. Constraint (111)
enforcesthe precedence rel ationshipsamong opera-
tionsthat bel ong to the samejob. Congtraint (11m) en-
suresthat, for at least one machine, call it i, thefirst
operation to be processed must belong to £'. The
boundsin Constraints (11n)-(11p) are determined by
examining therelative position of any operation, O, in
the sequence of operations to be processed on ma-
chineand inthe sequence of operationsthat belongto
jobj. Congtraint (4.11q) enforceslogicd binary restric-
tions on the-variables and the nonnegativity of the-
variables. Observethat thebinarinessof the-variables
together with Congraints (11€), (11h), and (11i) induce
binary restrictionsonthe-variables.

Proposition 2. Constraints (11k) enforceaset of valid
inequalities.

Proof.

, by 2, + Dy + D X By
. =Lthen ™ T m T whichisvalid

sincejobj, precedes(not neca&-ari lyimmediately) job
j, on machinei. On the other hand, if »;, =0, then

t., —l. =t, —u, +¥ ' p,, —max|p, L .
S~ T O "},Whlchlsvahd

. S X .p,, — max ; Pt =0 .
it —u, =0sinceand j5 T Akl 2 , while
L.~ 20,

Therearetwo setsof optiond, dternativevdidin-
equalitiesthat can beinvestigated in the context of JS-
AT SP1 based ontheformulations devel oped by Sherdi
et d. Thefirst of thesereplaces Congtraint (11i) by the
following:

Vig, 2 (x5, + 5, D+, +3, ). V0 p) el ie M
Hence, we obtainthefollowing job-shop modd :
JSATSP2:

Minimize{ Cmax : (11b)-(11q), with (4.12) enforcedin
lieuof (11i)}.(4.13)

Sherdi et al. also describe certain RLT-lifted con-
graintsfor theATSPthat are predicated on defining the
following product variablesin the present context:

forp =% ‘pj‘.j: V(s Jsrdy) elice M (14)

(12)
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Thesevariables arethen related to the original -
and -variablesin JIS-ATSP1 viathefollowing validin-
equdities

S i +x. =y .  Vi#*j,eE.,icM
Fa [FENEY Ntz < R 1 2 i
EAC (15a)
by f orx = .1=';, LV, #F,eE.ieM
; [ |.r,j1f:1' Jidzz ] JaJ 2 i (15b)
0s “’fv': Jady = T.h i ? ¥ (-j] 7 jS * j_‘»‘ J = ]‘—.-‘ JdeM (15C)

Proposition 3. () Congraints (15a)-(15¢) arevalid and
(b) Constraints (15a)-(15c) along with Problem (4.11)
guaranteethat the RLT-based Congraint (14) hold true.
Proof.

() Observethat Constraint (15c¢) istrivialy valid by
thebinariness of the- and -variablesand thedefinition
of the-variablesin Congtraint (14).

Thevalidity of Congtraint (15a) isestablished next by
distinguishingthreecases:

o |If xj; =1, then »,, =1 and x},

=0, Vj, # jis /o
Hence £}, =0.%). # j,. J., by Congtraint (14) and,
therefore, Constraint (15a) holdstrue.

o Ifx,, =0ay}, =1 thentheremust exist aunique

job j for which 2 Susn =%V =Vin =1

A adsadapel

Hence, Condtraint (15a) isvalid.

o |Ifx,, =0~y =0,thenjobj, precedesj, on ma-
chine i, and it must be that
f:h =-T:,_.-', s _O V)5 # JisJ2s

Likewise, thevalldlty of Congtraint (15b) isestab-
lished bel ow by considering three cases:
o If =1, then Vi, =1
Gy =B =05 Vi,
(15b) isvdid.
=0y}, =1,then Constraint (15b) equiva-

< S~ B S
lently asserts that ., = _ Fawn = 2. %is =1,

Jdadaada e h=d

whichisvalid by Congtraint (11d)
o Ifx, =0ny,, =0,thenf;, =
hence, Constraint (15b) isvali d.
(b) Now, we shall show that Constraints (15b)-(15c)
inconcert with Problem (4.11) imply the RLT substitu-
tion equationsin (14).
o |f[x

';.,-“.,_ =0n 11.1::--,..':
LBioTechnology

and
# J.. i,, and, hence, Congtraint

o Ifx;,

Vi # JisJa and;

= 0 W .}‘Iif‘;_,l': = l:ﬂl then ./f:-'i;’.-"j! = D by

Constraint (15¢) and, therefore, Constraint (14)
holdstrue.
o If X, =0 and Constraint

=1ay;, =0, then x;,

(15b) impliesthat | = S =
voking the nonnegativity of the-variables, wede-
ducethat f;,, =0, and Constraint (14) isvalid.

5, =1, then x;

. Therefore, in-

=0 and Constraint

(15b) impliesthat /i * 2. | T

{F.dsad JeT

o |If J.]E =1ay
=1
. How-

ever, f;,, =1 by (15¢) and, since x;; =1, then
Xy, =0, Vi = j, suchthat {;j.j,.j,} =T, by (11d),

andso, 1, . = vj = j,suchthat{;. j;.j,} =T,
by (15c). Thus, f;,,. =1, and Constraint (14) is
vdid.

Also, under (15a)-(15¢), wecanlift Congraint (11j)
and replaceit by thefollowing vaidinequdity, asproven
nextin Proposition 4.

Ly 2t P+ 3 f 1Py, — A=Y, By +uy =L )=V = j e JieM

(16)
Propos t| on 4. Condrant (16) enforcesasat of vdid
inequdlities.
Proof. We shall examinethree casesto establish
thevadidity of (16):
o If[y, » =1, thenjob j, istheimmediate
=0

=1na I'I;-I
predecessor of job j, onmachinei, and E X5

by (11¢). Hence, |, 2 FusPu =0, and (16)
equwdentlyasseﬂsthetr =t,, +p,,, Whichisvdid.

o |If[y,, =1ax), =0], then jOb I preced% of job
J.,» butisnot itsimmediate predecessor on machine

i. Therefore, thereexistsauniquejobj such that

J# and X, =1, and

T flva _1( J p? ', Hence, (16)

équival ently assertsthat ¢, =1, +p,; +p,;, Wwhich
isvaid.

o Ify, =othen 2 JusPu =0 Hence,(16)
equwal ently assertsthat ty, — 1y, 2, —u,, Whichis

truebecause:r, -1, =0,whiler,;, —u,, <0

Wedsoi ntroducethefol lowing constra nts, which
arevalidated by Proposition 5 bel ow:

Hn Tudian Jounual
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Cmax 21, +p; +p;x; + z Py Jfi,, U eE . ieM

vt 7
Proof.

Observethat Constraint (17) isderived fromthe
lifted makespan congtraint formulated in (11b). Now, if
x; =0, then £}, =0.vj, # ;. , and Constraint (17)
reducestoCmax =z, + p., whichisvalid. Ontheother

hand, if x; =1= £, =»,,, and Constraint (17) re-

i

2 — 3+ = N ¥ . . .
Cmax =t =py+ 2. Pyfin which is again

-
Jy=J.0

ducesto

vdid.

Noting that (15a) and (15b) respectively imply
(11h) and (11f) under r = 0, weget thefollowing RLT-
lifted dternativeformulation of JIS-ATSPL.

JS-ATSP3: Minimize{Cmax : (11b)-(11q) and (17),with (11f)
and (11h) replaced by (4.15a)-(4.15c), and (11j) replaced by
(16)}. (18a)

Remark 3. Similar to the variant JS-AT SP2 derived
from JS-ATSP1, we could attempt thefollowing dter-

nativeto JS-ATSP3.
JS-ATSP4: Minimize {Cmax : Constraints of JS-ATSP3
where (11i) isreplaced by (12)} (18b)

CONCLUSIONS

We have proposed novel continuous nonconvex as
wel| aslifted discreteformulationsfor the challenging
classof job-shop scheduling problemswith the objec-
tiveof minimizingthemaximum completiontime. More
generaly intheliterature on the benefits of the RLT
methodol ogy for minimax and discrete optimization
problems, wedeve oped an RLT-enhanced continuous
nonconvex mode for thejob-shop problem based on
aquedraticformulation of thejob sequencing condrants
onmachinesdueto Nepomiastchy. Thelifted linear pro-
gramming rel axationthat isinduced by thisformulation
was then embedded in aglobally convergent branch-
and-bound algorithm. Further more, we designed an-
other novel formulation for thejob-shop scheduling
problem that possessesatight continuousrel axation,
wherethe non-overlapping job sequencing constraints
onmachinesare modeled viaalifted asymmetric trav-
eling sdesman problem (AT SP) congtruct, and specific
satsof vaidinequalitiesand RLT-based enhancements
areincorporated to further tighten theresulting math-
ematical program. In addition, we suggest that atheo-

retical investigation of dominancere aionshipsbetween
our AT SP-based formul ation and alternative M 1Pfor-
mulations of the JISSP be conducted for futureresearch.
Wea so proposeto eva uatethe RLT-based Lagrangian
dua formulations, and possibly integrate thesewithin
our B& B agorithminlieu of theRLT-based linear pro-
gramming relaxation to accd erate the computationd per-
formanceand enhancethe B& B pruning effect. Findly,
it would beworthwhileto apply the general-purpose
lifting proceduresfor strengthening the JSSP formula-
tion, and comparetheinduced rel axation against our
AT SP-based formulationsthat werelifted using spe-
cidized vaidinequditiesand RLT congtructs.
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