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ABSTRACT
In this paper, we propose novel continuous nonconvex as well as lifted
discrete formulations of the notoriously challenging class of job-shop
scheduling problems with the objective of minimizing the maximum
completion time. In particular, we develop an RLT-enhanced continuous
nonconvex model for the job-shop problem based on a quadratic
formulation of the job sequencing constraints on machines. The tight
linear programming relaxation that is induced by this formulation is then
embedded in a globally convergent branch-and-bound algorithm.
Furthermore, we design another novel formulation for the job-shop
scheduling problem that possesses a tight continuous relaxation, where
the non-overlapping job sequencing constraints on machines are modeled
via a lifted asymmetric traveling salesman problem (ATSP) construct, and
specific sets of valid inequalities and RLT-based enhancements are
incorporated to further tighten the resulting mathematical program.
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INTRODUCTION

The deterministic job-shop scheduling problem
(JSSP) arises in many industrial environments and pre-
sents a classical combinatorial optimization problem that
has proven to be highly challenging to solve. The extent
of research conducted in this field over the last forty
years or so has motivated several surveys, such as the
survey by Blazewicz et al.[1] and the state-of-the-art
review by Jain and Meeran[2]. The computational in-
tractability of this problem is illustrated by the fact that
the 10-job-machine test problem FT10, introduced by
Fisher and Thompson[3] in 1963, was provably solved

to optimality for the first time by Carlier and Pinson[4]

more than two decades later in 1989. Although several
mathematical programming formulations have been pro-
posed for the JSSP since the late fifties, little progress
has been realized with this trend of research, principally
because of the weakness of the underlying continuous
relaxations of the formulated models and the tremen-
dous consequent computational effort required to solve
the associated pure or mixed-integer programs. Reflect-
ing on the difficulty of the JSSP, Conway et al.[5] ob-
served, quite emphatically, that: �Although it is easy to
state, and to visualize what is required, it is extremely
difficult to make any progress whatever toward a solu-
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tion. Many proficient people have considered the prob-
lem, and all have come away essentially empty-handed.�

However, recent developments in solving mixed-
integer programs together with modern computer ca-
pabilities resurrect some hope in this direction and, with
this motivation, we investigate in this chapter several
new modeling and lifting concepts for the JSSP with the
objective of minimizing the maximum completion time.

In the second part, we introduce our notation along
with Manne�s model for the deterministic JSSP. In the
third part, we propose an enhanced continuous
nonconvex mathematical program for this problem using
the RLT methodology, and investigate an RLT-based
Lagrangian dual formulation that is further enhanced via
semidefinite cuts. The fourth part delineates and discusses
a globally convergent optimization algorithm where RLT
formulations play a key role in providing tighter relax-
ations. In The fifth part, we propose enhanced LP relax-
ations for the JSSP based on a novel formulation in which
the non-overlapping job sequencing constraints on ma-
chines are modeled via a lifted asymmetric traveling sales-
man problem (ATSP) viewpoint, and various sets of valid
inequalities and RLT-lifted constraints are proposed to
further tighten the resulting representation.

NOTATION AND SOME EARLY MODELS

Several mathematical programming formulations
have been proposed for the JSSP. These early works
are reviewed in detail in Appendix A, but we focus here
on the most popular and useful model due to Manne[6],
as well as certain nonlinear, nonconvex modifications
suggested by Nepomiastchy[7] and Rogers[8], which will
be exploited using new modeling concepts and RLT-
based enhancements discussed later in this paper.

Notation

Below is a summary of our notation.
 M =set of m machines.
 J =set of n jobs.

 jJ = set of ordered operations of job j.

 Dummy operation 0 that marks the start (and the
end) of all operation sequences on all machines.

 0 0J J 

 *F =set of first operations, that is, the first opera-

tion of each job is included in this set.

 *
iF =subset of *F that is to be performed on ma-

chine i , i .

 *E =set of last operations, that is, the last operation
of each job is included in this set.

 *
iE = subset ofthat is to be performed on machine,.

 T=operation of job j to be performed on machine i.
 p

ij
=processing time of O

ij

 A
j
={(i

1
j,i

2
j): Operationis O

i1j 
required to immedi-

ately precede operation O
i2j 

of job j} =set of con-
junctive arcs that represent precedence constraints
between (ordered) operations belonging to job j.

 D
i
={(ij

1
,ij

2
) : both jobs j

1
and j

2
,j

1
<j

2
,require op-

erations O
ij1

 and O
ij2

 to be performed on machine i
in a disjunctive fashion}

 P(O
ij
)=set of all operations of job j that precede

operation O
ij

 S(O
ij
)=set of all operations of job j that follow O

ij

 T= upper bound on the makespan.
 [l

ij
, u

ij
]=time interval for commencing operation O

ij
.

Such lower and upper bounds can be computed

by setting  and

 T
i
={set of triplets of distinct job indices (j

1
, j

2
, j

3
)

such that it is possible to perform the respective
operations of these jobs in this order on ma-
chine, .

Manne�s Model (1960)
For convenience, and because of the popularity of

this formulation, we state Manne�s model for the JSSP,
and refer the interested reader to Appendix A for a de-
tailed chronological account of alternative existing for-
mulations in the literature.

Decision variables

 t
ij
=starting time of



  is the

makespan or the maximum completion time of a
schedule.

Minimize (1a)
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Subject to (1b)

(1c)

(1d)

(1e)

(1f)

where K is a suitably large number. The objective func-
tion (1a) and Constraint (1b) express the objective of
minimizing the maximum completion time. Constraint
(1c) enforces the precedence restrictions between (or-
dered) operations that belong to job j, whereas Con-
straints (1d)-(1e) model the non-overlapping job se-
quencing constraints on machines via disjunctive rela-
tionships. Constraint (1f) enforces logical binary and
nonnegativity restrictions on the problem variables.

This model provides the most compact formulation
among early models for the JSSP, and was used in
Greenberg�s[9] B&B algorithm for the job-shop prob-
lem, as well as in Balas�[10] application of a specialized
version of the filter method to the JSSP. Instead of the
discrete non-overlapping job sequencing constraints (1d-
1e) utilized in Manne�s model, Nepomiastchy suggested
the following nonlinear, continuous, nonconvex constraints:

The problem was then tackled using a penalty func-
tion approach that could terminate at a local, possibly
non-global, optimum. In a similar spirit, Rogers adopted
the following linear-quadratic constraints to model the
foregoing disjunctive relationships:

(2a)

(2b)

(2c)

(2d)

Here, the role of the binary variables used in Manne�s
model is played by the complementarity constraints (2d).
Again, a local search procedure was proposed to tackle
this nonlinear, nonconvex formulation.

Valid Inequalities in the literature

Valid inequalities, or cutting planes, are frequently
adopted to strengthen the continuous relaxations of
combinatorial optimization problems. The main task here
is to formulate classes of valid inequalities that not only
tighten the model representation and help significantly
improve its continuous relaxation-based lower bound,

but also can be generated efficiently within a reason-
able amount of time. Ideally, it is desirable to generate
valid inequalities that characterize facets of the convex
hull of feasible solutions to the MIP problem, but judi-
ciously generated strong cutting planes or lifted ver-
sions of model-defining constraints can also greatly en-
hance the computational performance.

Applegate and Cook[11] offer an interesting analy-
sis of the effect of valid inequalities on lower bounds for
both disjunctive and MIP formulations of the JSSP. Their
study includes newly developed valid inequalities as well
as those proposed by Balas[12] and Dyer and Wolsey[13].
We identify below certain key valid inequalities that have
been proposed in the literature in order to strengthen
the underlying LP relaxations of Manne�s model.
 Basic cuts (attributed to Dyer and Wolsey[13] in [11]):

 Half cuts[11]:

 Basic cuts plus epsilon[11]:

 Triangle cuts[11]:

RLT-BASED CONTINUOUS MODEL AND
LINEAR LOWER BOUNDING PROBLEM

RLT-based relaxation

Adopting the continuous nonconvex disjunctive con-
straints suggested by Nepomiastchy, we can reformu-
late Manne�s[14] model as follows, where we have de-
fined a new variable  to represent the difference

, for the
sake of analytical convenience.
Minimize C Max (3a)

Subject to (3b)

(3c)

(3d)

(3e)

(3f)

Based on the order of operations O
ij1

 and O
ij2

 in
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the routing of jobs j
1 
and j

2
, we can derive lower and

upper bounds on the starting time of any operation O
ij

of the type  and

, where T is some upper

bound on the optimal makespan. Although T may be
computed via any adequate heuristic, efficient algorithms
(such as the Shifting Bottleneck procedure) should be
preferred, because the tightness of the bounds on the
variables significantly contributes to the strength of the
constraints generated by RLT constructs. Thus, we

deduce box-constraints of the type ,

where  and . Using

these bounding constraints, we can augment the job-
shop formulation with the following RLT bounding-fac-

tor product relationships, denoted , of the type:

 ,

and , .

Hence, we derive the following Manne-based RLT-
enhanced formulation, which we denote by JQP.
JQP: Minimize (4a)

Subject to  (4b)

(4c)

(4d)

(4e)

(4f)

(4g)

As per the RLT methodology, this reformulated
problem can be linearized to yield a lower bounding
linear program by using the following RLT variable sub-
stitution identities:

(5)

Denoting [.]
l
 by  the operator that linearizes poly-

nomial functions under (5), we have that:

The RLT-based linear programming relaxation, JLP,
is thus obtained as given below.
JLP: Minimize (6a)

Subject to (6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

(6i)

As obvious from the foregoing derivation, JLP is
indeed a lower bounding problem for JQP. Moreover,
if the substitution identities (5) are satisfied in an opti-
mal solution to JLP, then this solution also yields an op-
timum for JQP.

Remark 1. Observe that the bounding constraints

of the type  are not explicitly en-

forced in JLP. In fact, the bound-factors

 and  are dominated by

the higher order bound-factor products inherent within

.

Remark 2. Note that  implies that O
ij2

 must

precede O
ij1

. Similarly, if , then O
ij1 

must pre-

cede O
ij2

. Therefore, once any disjunction is resolved,

i.e.  or  is determined, we replace the

associated constraints in (6d)-(6h) by  or

, respectively..

Lagrangian dual formulations

In this section, we investigate a basic Lagrangian
dual relaxation that is further enhanced via semidefinite
cuts in order to tighten the model formulation (see Sherali
and Fraticelli[15] and Sherali and Desai[16]).

Basic formulation

Denoting Lagrange multipliers  associated with

(6b), for  associated with

(6c) for   associated with
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(6d),  associated with (6g), and  associated with

(6h) for  we can formulate the fol-
lowing Lagrangian Dual to JLP, which we denote by
JLD1.

DLD1:

(7)

where

(8a)

subject to (8b)

(8c)

(8d)

and where we have imposed the implied bounds on the
t-variables in the subproblem constraints (8d) in order
to ensure a finite optimum for this problem. For conve-
nience, we shall denote the objective function expres-
sion in (8a) as �Obj (8a)�.

SDP-enhanced formulation

JLD1 can be further enhanced by incorporating a
class of SDP-based constraints in the spirit of the SDP
cuts introduced by Sherali and Fraticelli. To this end,

we consider the vector ,and define the

following matrix .

Requiring  to be positive semidefinite, that is

, we enforce constraints of the type

,. This leads to

the following RLT-based, SDP-enhanced, Lagrangian
dual formulation, JLD2, where the Lagrangian multipli-
ers associated with the dualization of (6e) are denoted

.
JLD2:

(9)

where

(10a)

subject to

(10b)

(10c)

(10d)

Deflected subgradient optimization techniques are
worthy of exploration in order to solve JLD1 and JLD2.
Specialized efficient schemes for evaluating the
Lagrangian dual objective functions shall be developed
in this research. Observe that the objective coefficients
pertaining to the h-variables in (10a) are nonpositive
and, therefore, the upper bound on the -variables rep-
resented in (10b) will be binding due to the minimiza-
tion operation. Hence, we shall also investigate an al-
ternative strategy in which the upper bounding expres-
sion in (10b) is dualized and accommodated within
(10a), while requiring  in lieu of (10b). Note
that the latter constraint can be equivalently replaced
by the convex hull of this restriction and (10d). We shall
exploit this structure in designing efficient schemes for
optimizing such Lagrangian dual formulations.

BRANCH-AND-BOUND ALGORITHM

In this section, we present a globally convergent
B&B algorithm in concert with the RLT-based formu-
lation.

Let denote the hyperrectangle bounding the g-
variables at the root node of the B&B search tree, and
accordingly, let us denote the original problem and its
corresponding lower bounding problem as JQP () and
JLP (), respectively. Likewise, for any subnode k,
we define the sub-hyperrectangle  and the cor-
responding problems JQP (k) and JLP (k). Let í[.]
be the value at optimality of any given problem [.]. For
convenience, we also denote the vector of t

ij
-variables

by, and similarly we introduce the vectors  g and h.
If at any node k in the B&B tree, the optimal solu-

tion ( ) obtained for JLP (k) satisfies the vari-
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able substitution identities (5), then  solves JQP
(k). That is, all the RLT variables faithfully reproduce
the squared variables they represent, and a feasible so-
lution to the original problem is thereby available that
achieves the lower bounding value. As a consequence,
the incumbent solution and its value for the original prob-
lem, (t*, g*)and C max*, can potentially be updated
as necessary. Also, if (5) holds for JLP () at the root
node of the search tree, then the solution obtained to
JLP () is indeed optimal to JQP (), and the algo-
rithm terminates.

As noted in Remark 2, ,

and similarly . That is, impos-

ing one sign or another to any variable  is equiva-

lent to a binary decision that fixes the relative order of
operations O

ij1
 and O

ij2
 on machine i. This result is at

the heart of the branching rule.

Branching rule

Consider some node k in the search tree. The par-
titioning step is based on the identification of the vari-

able  that creates the highest discrepancy between

an RLT variable and the term it replaces. We select

 such that

, where

Upon the  selection of , we create two new

nodes by partitioning k into

 and

.

A formal description of the overall B&B algorithm
is given below.
Step 0: Initialization Step. Initialize the incumbent solu-

tion (t*, g*) and its objective value  by com-
puting a heuristic solution. (We used the SBP
[1] for this purpose.) Set k=1 and k = .
Solve JLP () and denote its optimal solution

by ( ). Determine a branching variable

 according to the branching rule. If ,

then  is optimal to JQP; terminate the al-

gorithm after setting , and

. Otherwise, if ,
proceed to Step 1, with the selected node .

Step 1: Branching Step. Create two new nodes, (k +
1) and (k +2), by partitioning , into k+1

and  as explained above, and remove the par-
ent node, , from the list of active nodes.

Step 2: Bounding Step. Solve JLP (k+1) and JLP
(k+2). Update the incumbent if appropriate.
Select and store a branching variable for each
of these two nodes. Increment .

Step 3: Fathoming Step. Fathom any node k such that
 by removing it from

the list of active nodes, where  is a speci-
fied percentage optimality gap (use  if a
global optimal is desired). If the list of active
nodes is empty, stop. Otherwise, proceed to
Step 4.

Step 4: Node Selection Step. Among the active nodes,
select one ( , say) that has the least lower
bound, and go to Step 1.

Proposition 1. The foregoing B&B algorithm (run
with ) terminates finitely and produces an optimal
solution to JQP at termination.

Proof. The result directly follows from the branch-
ing strategy because there are a finite number of ways
of resolving the disjunctions.

Note that the deepest level that can be reached in

the search tree is , which corresponds to fixing

the signs of .

LIFTED ATSP-BASED FORMULATIONS

In a recent paper, Sherali et al.[17] have proposed
several lifting concepts and RLT-enhancements for the
ATSP with and without precedence constraints, and
have demonstrated the tightness of the resulting formu-
lations for various standard benchmark problems. In
the context of the JSSP, we shall adopt an insightful
modeling approach where the scheduling of jobs to be
performed on any machine is viewed as an ATSP prob-
lem, and certain sets of valid inequalities and RLT-en-
hancements are derived, as established in the sequel
below.
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Decision Variables
 t

ij
=starting time of





 . C max is the
makespan or the maximum completion time of a
schedule.

JS-ATSP1:Minimize C max (11a)

subject to (11b)

(11c)

(11d)

(11e)

(11f)

(11g)

(11h)

(11i)

(11j)

(11k)

(11l)

(11m)

(11n)

(11o)

(11p)

(11q)

The objective function (11a), in conjunction with
Constraint (11b), enforces the definition of the makespan
as the maximum completion time of the schedule. Ob-
serve that Constraint (11b) provides a lifted expression
of the makespan constraint formulated in Manne�s
model, taking into consideration the completion time of
the last operation of every job and augmenting this with
the sum of the processing times of the operations sched-
uled after it. For the remainder of the formulation, in
essence, we exploit the analogy between the set of job-
operations to be performed on any machine, augmented
with a dummy node 0, and the cities to be visited in an
ATSP given the base city 0, in order to sequence the

operations assigned to this machine via Constraints
(11c)-(11i) and (11q). Constraint (11j) computes the
start-times of operations on each machine given the y-
variables and is partially lifted via Constraint (11k) as
established in Proposition 2 below. Constraint (11l)
enforces the precedence relationships among opera-
tions that belong to the same job. Constraint (11m) en-
sures that, for at least one machine, call it i, the first
operation to be processed must belong to . The
bounds in Constraints (11n)-(11p) are determined by
examining the relative position of any operation, O

ij
, in

the sequence of operations to be processed on ma-
chine and in the sequence of operations that belong to
job j. Constraint (4.11q) enforces logical binary restric-
tions on the -variables and the nonnegativity of the -
variables. Observe that the binariness of the -variables
together with Constraints (11e), (11h), and (11i) induce
binary restrictions on the -variables.
Proposition 2. Constraints (11k) enforce a set of valid
inequalities.
Proof.

If , then , which is valid

since job j
1
 precedes (not necessarily immediately) job

j
2
 on machine i. On the other hand, if , then

, which is valid

 since and , while

.
There are two sets of optional, alternative valid in-

equalities that can be investigated in the context of JS-
ATSP1 based on the formulations developed by Sherali
et al. The first of these replaces Constraint (11i) by the
following:

(12)

Hence, we obtain the following job-shop model:
JS-ATSP2:
Minimize {Cmax : (11b)-(11q), with (4.12) enforced in
lieu of (11i)}.(4.13)

Sherali et al. also describe certain RLT-lifted con-
straints for the ATSP that are predicated on defining the
following product variables in the present context:

(14)
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These variables are then related to the original -
and -variables in JS-ATSP1 via the following valid in-
equalities:

(15a)

(15b)

(15c)

Proposition 3. (a) Constraints (15a)-(15c) are valid and
(b) Constraints (15a)-(15c) along with Problem (4.11)
guarantee that the RLT-based Constraint (14) hold true.
Proof.
(a) Observe that Constraint (15c) is trivially valid by
the binariness of the - and -variables and the definition
of the -variables in Constraint (14).
The validity of Constraint (15a) is established next by
distinguishing three cases:

 If , then  and , .

Hence , by Constraint (14) and,

therefore, Constraint (15a) holds true.

 If , then there must exist a unique

job j for which .

Hence, Constraint (15a) is valid.
 If , then job j

2
 precedes j

1
 on ma-

chine i, and it must be that

,
Likewise, the validity of Constraint (15b) is estab-

lished below by considering three cases:

 If , then  and

, and, hence, Constraint
(15b) is valid.

 If , then Constraint (15b) equiva-

lently asserts that ,

which is valid by Constraint (11d).

 If , then  and,
hence, Constraint (15b) is valid.

(b) Now, we shall show that Constraints (15b)-(15c)
in concert with Problem (4.11) imply the RLT substitu-
tion equations in (14).
 If , then  by

Constraint (15c) and, therefore, Constraint (14)
holds true.

 If , then  and Constraint

(15b) implies that . Therefore, in-

voking the nonnegativity of the -variables, we de-
duce that , and Constraint (14) is valid.

 If , then  and Constraint

(15b) implies that . How-

ever,  by (15c) and, since , then

, , such that  by (11d),

and so, , such that ,

by (15c). Thus, , and Constraint (14) is
valid.
Also, under (15a)-(15c), we can lift Constraint (11j)

and replace it by the following valid inequality, as proven
next in Proposition 4.

(16)

Proposition 4. Constraint (16) enforces a set of valid
inequalities.

Proof. We shall examine three cases to establish
the validity of (16):
 If , then job  j

1
 is the immediate

predecessor of job  j
2
 on machine i, and 

by (11c). Hence, , and (16)

equivalently asserts that , which is valid.
 If , then job  j

1
 precedes of job

j
2
, but is not its immediate predecessor on machine

i. Therefore, there exists a unique job j such that
 and , and

, Hence, (16)

equivalently asserts that , which
is valid.

 If , then , Hence, (16)

equivalently asserts that , which is
true because , while 
We also introduce the following constraints, which

are validated by Proposition 5 below:
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(17)

Proof.
Observe that Constraint (17) is derived from the

lifted makespan constraint formulated in (11b). Now, if

, then , and Constraint (17)
reduces to , which is valid. On the other

hand, if , and Constraint (17) re-

duces to , which is again

valid.
Noting that (15a) and (15b) respectively imply

(11h) and (11f) under , we get the following RLT--
lifted alternative formulation of JS-ATSP1.
JS-ATSP3: Minimize {Cmax : (11b)-(11q) and (17),with (11f)
and (11h) replaced by (4.15a)-(4.15c), and (11j) replaced by
(16)}. (18a)

Remark 3. Similar to the variant JS-ATSP2 derived
from JS-ATSP1, we could attempt the following alter-
native to JS-ATSP3.
JS-ATSP4: Minimize {Cmax : Constraints of JS-ATSP3
where (11i) is replaced by (12)} (18b)

CONCLUSIONS

We have proposed novel continuous nonconvex as
well as lifted discrete formulations for the challenging
class of job-shop scheduling problems with the objec-
tive of minimizing the maximum completion time. More
generally in the literature on the benefits of the RLT
methodology for minimax and discrete optimization
problems, we developed an RLT-enhanced continuous
nonconvex model for the job-shop problem based on
a quadratic formulation of the job sequencing constraints
on machines due to Nepomiastchy. The lifted linear pro-
gramming relaxation that is induced by this formulation
was then embedded in a globally convergent branch-
and-bound algorithm. Further more, we designed an-
other novel formulation for the job-shop scheduling
problem that possesses a tight continuous relaxation,
where the non-overlapping job sequencing constraints
on machines are modeled via a lifted asymmetric trav-
eling salesman problem (ATSP) construct, and specific
sets of valid inequalities and RLT-based enhancements
are incorporated to further tighten the resulting math-
ematical program. In addition, we suggest that a theo-

retical investigation of dominance relationships between
our ATSP-based formulation and alternative MIP for-
mulations of the JSSP be conducted for future research.
We also propose to evaluate the RLT-based Lagrangian
dual formulations, and possibly integrate these within
our B&B algorithm in lieu of the RLT-based linear pro-
gramming relaxation to accelerate the computational per-
formance and enhance the B&B pruning effect. Finally,
it would be worthwhile to apply the general-purpose
lifting procedures for strengthening the JSSP formula-
tion, and compare the induced relaxation against our
ATSP-based formulations that were lifted using spe-
cialized valid inequalities and RLT constructs.
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