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INTRODUCTION 
 

 Path planning of autonomous mobile robot is one of the recent research hotspots at home and 
abroad. Currently, artificial potential field[1] and reactive navigation are the major path planning 
methods. In particular, artificial potential field takes environment as a virtual artificial force field. Target 
point generates gravitation while obstacle generates repulsion. Under the control of resultant force 
between gravitation and repulsion, the robot can avoid the obstacle to reach the target point[2,3]. Its 
method and principle are simple and easy to realize real-time control for bottom layer. However, it is 
difficult to adapt to the dynamic changes of environment. Moreover, there are such problems as 
unreachable target, local minimum and oscillation. Therefore, the method of building reactive 
navigation controller based on fuzzy control and neural network methods are emerging. Simulated 
annealing algorithm is adopted to conduct cost function search and realize robot path planning. 
However, reactive navigation lacks a global cognition for the environment, can hardly achieve 
cumulative global optimum and cause the robot to easily get into local trap in a complex environment. 
 To solve the partial trap problem of reactive navigation in an uncertain environment, this paper 
proposes a robot path planning algorithm based on Partial Observable Markov Decision Processes 
(POMDP), adopts six-tuple of POMDP for modeling of robot path planning in the dynamic and 
uncertain environment and applies cumulative reward function to maximally realize the global optimum 
of path planning. Aiming at the problems that the obstacles are unknown and there might be deviations 
in robot perception, belief state space is introduced, and value iteration algorithm based on point pruning 
policy tree is adopted to get real-time planning strategy and effectively reduce the algorithm complexity. 
 

PATH PLANNING MODEL OF POMDP 
 

Path planning model of POMDP 
 The path planning of autonomous mobile robot needs to face the dynamic and uncertain 
environment with unknown obstacles, conduct planning and avoid obstacles according to the sensor’s 
perception for the environment, and find out an optimal and collision-free path from starting point to 
target point. The path planning of autonomous mobile robot in a complex environment needs to solve 
multiple problems: 
 (1) Mostly, the path planning of mobile robot adopts reactive navigation, lacks a global cognition 
for the environment and easily gets into local optimum. 
 (2) Being influenced by such factors as sensor precision and environmental noise, there are 
errors in robot’s perception for the environment. 
 (3) In running process of the system, there are uncertainties in robot movement. That is, the robot 
cannot always complete the set actions accurately, and there are action failures. Therefore, the path 
planning of autonomous robot is actually about the optimal decision problem in a dynamic and uncertain 
environment[4]. POMDP is an ideal mathematical model to solve this problem[5]. 
 According to the prior information of the system, POMDP conducts modeling for intelligent 
agent through environment observation, possibly executed action and the action’s effect on environment. 
Globally optimal strategy can be obtained by getting the maximum value of cumulative reward. It can be 
described with a six-tuple , , , , ,S A Z T R O< >  in which S is state set, A is action set, Z is observation set, and 

( , , ')T s a s is state transition function which means the probability of reaching the state 's by executing the 
action a from the state s . ( , )R s a is reward function which means the reward obtained by executing the 
action a in the state s . ( ', , )O s a z is observation function which means the probability of reaching the state 's

and obtaining the observation set z by executing the action a . 
 
Modeling of state transition function 
 The positions of robot and obstacles are defined through 2D grid map. The state set S is used to 
describe the positions of robot and obstacles. At any moment, the state of each grid might be one of the 
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following four types: being occupied by the robot, being occupied by the obstacle, being blank and 
terminal. 
 Definition 1 Suppose the environment is divided into N grids. The state set of robot path planning 
is defined as: 
 

 (1) 
 
 Where, i is the number of grid where the robot is located, 1 2{ , , }NS s s s= L  
 Definition 2 Suppose the robot can move at four directions in the environment. The executable 
action set for the robot that is described by the action A is as below: 
 

{ , , , }A East South West North=  (2) 
 
 The state transition function ( , , ')T s a s means the probability of reaching the state 's by executing the 
action a in the state s . That is, ( , , ') ( ' | , )T s a s P s s a= . When the robot executes a certain action, the expected 
effect might not be fully achieved, and there is a failure probability to some extent. In a practical 
environment, it can be obtained from statistical data. In a simulation environment, suppose the 
probability for the robot to successfully execute the action is δ , and the probability for the robot to fail to 
execute the action, move toward the opposite direction or remain still is1 δ− . 
 
Modeling of observation function 
 Use the observation set Z to indicate robot’s cognition for the environment. That is the result for 
detecting the positions of robot and obstacles by the sensor. Suppose the detection state for robot for the 
grids includes being occupied by the robot, being occupied by the obstacle, being blank, terminal and 
unknown state. In particular, the unknown state means the undetected grids. 
 Definition 3 Suppose the environment is divided into N grids. The observation set of robot for the 
environment is defined as: 
 

 (3) 
 
 Where, i is the number of grid where the robot is located, 1 2{ , , }NZ z z z= L  
 Being influenced by such factors as sensor precision and environmental noise, there might be 
errors between the grid state detected by the robot and the actual state. Such errors can be expressed by 
the observation function ( ', , )O s a z . ( ', , ) ( | , )O s a z P z s a′= . In a simulation environment, suppose the probability 
for the robot to successfully detect the grid state is μ , and the probability for detection failure is1 μ− . To 
simplify the model complexity, the grid state is uniformly set as _z u when the detection fails. 
 
Modeling of reward function 
 To prevent path planning from getting into local optimum, immediate ( , )R s a and cumulative 
reward ( )V sπ for path/action need to be concerned. ( , )R s a means immediate reward obtained from executing 
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the action a in the state s . For a certain state s , the state after robot movement includes collision, being in 
blank grid and arriving at terminal. Set the reward obtained from robot movement in blank grid as a 
negative incentive, which can prevent the robot from wandering in the blank grid. Therefore, set the 
immediate rewards for reaching these three states as -100, -1 and 100. 
 To achieve the global optimum of path planning, obtain the shortest path by maximizing the 
cumulative reward. The cumulative reward ( )aV s is obtained through Bellman equation: 
 

1( ) ( , ) ( , , ) ( )t t
s S

V s R s a T s a s V sγ −
′∈

′ ′= + ∑
 

(4) 

 
 Where, γ  is discount factor and its target is to have expected value converged. 
 

1( ) ( , ) ( , , ) ( )t t
s S

V s R s a T s a s V sγ −
′∈

′ ′= + ∑
 

(4) 

 
 Due to the uncertainty of mobile robot for the environment observation, the environment for the 
robot is not always confirmed to be a certain state s but there are multiple states distributed in form of 
probability. Therefore, the belief state space B is introduced to indicate the probability distribution for the 
states observed by the robot in the practical environment state. The belief B at t is described by Formula 
(5) and calculated by Formula (6). 
 

1 1 2 2 0 0 0( | , , , , , ,..., , , )t t t t t t t tb P s a z a z a z a z s− − − −=  (5) 
 

( ') ( | , , )
( , , ) ( , , ) ( )

( , , )
s S

b s P s z a b
O s a z T s a s b s

P z a b
∈

′ ′=

′ ′
= ∑

 
(6) 

 
 The functions based on belief state and cumulative reward can be rewritten by Formula (4) as: 
 

* *
1( ) max[ ( ) ( , ) ( | , ) ( )]t ta s S z Z

V b b s R s a P z b a V bγ −
∈ ∈

= +∑ ∑
 

(7) 

 
 It can be seen that the process of getting maximal strategy is an iteration process of obtaining the 
maximum function. The iteration ending condition is shown in Formula (8): 
 

1
(1 )( ') ( )
2t tV b V b ξ γ
γ−
−

− <
 

(8) 

 
 The strategy of mobile robot’s POMDP model decision is to map the state to the action. That is

s aπ ( ) → . To obtain the globally optimal solution, the optimal strategy *π is the action to reach the maximal 
expected value for discount cumulative reward and can be solved by Formula (9). 
 

* *
1( ') arg max[ ( ) ( , ) ( | , ) ( )]V t

a s S z Z

b b s R s a P z b a V bπ γ −
∈ ∈

= + ∑ ∑
 

(9) 

 
SOLUTION ALGORITHM BASED ON POINT PRUNING POLICY TREE 

 
 Modeling of POMDPs is conducted by robot path planning. Robot path planning is transferred 
into the solving problem for maximal POMDP cumulative reward. 
 
Analysis for algorithm complexity 
 It can be known from POMDP model of robot path planning that the scales of state space, action 
and observation space are 4| |S N= , A =4 and 5| |Z N= in which N is the number of grids. Suppose the number 
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of belief state spaces at 1t − is 1t−Γ , the complexity of iteration process of the value is 2 1( )
ZtO S A Z −Γ . In

1 1
1 1

TZ
t ZA

− −
− −Γ = , T is the times span from 0 to t . 

 Therefore, to solve POMDP optimal strategy for robot path planning is a typical issue about 
“curse of dimensionality”[6]. To reduce the algorithm complexity, this paper proposes a value iteration 
solution algorithm based on point pruning policy tree. 
 
Value iteration solution algorithm based on point pruning policy tree 
 A policy tree is composed of actions and observations. Each node means the action executed by 
the robot, and each branch means the observation obtained after executing the action, as shown in Figure 
1. 
 

 
 

Figure 1: Policy tree of POMDP 
 
 Each belief point is traversed according to the structure of policy tree. The optimal value 
function and optimal strategy are obtained by Formula (6) and (8). As belief points and the scale of 
policy tree increase in an exponential order according to the observation number, the policy tree needs to 
be pruned. The idea of algorithm based on point pruning policy tree lies in the following: In the process 
of policy tree generation, select the belief points with partial characteristics to replace the whole belief 
state space at 1t − , obtain the policy tree 1tq − with the maximal value function in this belief state space, add 
the optimal sub-policy tree set and record it as 1tQ − . In the iteration at t , sub-policy tree generation will not 
traverse all actions and observations but traverses the optimal sub-policy trees of 1tQ −  to achieve quick 
solution. 
 

TABLE 1: POMDP solution algorithm based on point pruning policy tree 
 

Algorithm 1: POMDP solution algorithm based on point pruning policy tree 
1) for all tb in B 
2) for all ta in A 
3) for all tz in Z 
4) get and choose tb by tz , ta , 1tb −  
5) tB B b′ = ∪  
6) for all tb in B′  
7) for all ta in A 
8) for all tq in tQ  
9) ( ) ( ) ( )

t tq q
s S

V b b s V s
∈

= ∑  

10) ( ) max ( )
t

t
t qq Q

V b V b
∈

=  

11) arg max ( )
t

t

t q
q Q

V bπ
∈

=  

12) t ++ 
13) return 1) until 1|| ( ) ( ) ||t tV b V b ζ−− <  
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SIMULATION AND RESULT ANALYSIS 
 

Simulation environment and parameter setting 
 When Matlab is used to set up the simulation environment and set robot’s executing actions, the 
probability of successful execution δ is 0.90, and the probability of execution failure is 0.10. In case of 
action execution failure, it will remain at the original position. When the grid is non-obstacle, the 
probability for the robot to successfully detect the grid state is 1.0. When the grid is an obstacle, conduct 
three groups of experiments by adopting the probabilities for the robot to successfully detect the 
obstacles (1.0, 0.8 and 0.6) so as to verify the algorithm efficiency when the environment is partial 
observation for the robot. The discount factor γ is 0.85. 
 
Environment simulation of U-shaped obstacles 
 Aiming at the problems that some path planning algorithms usually get into local optimum in 
concave obstacles and the path planning cannot be conducted successfully, simulation is conducted in 
the environment of U-shaped obstacles in this paper. Simulate a 5 6× area and divide the environment into 
30 1 1× grids. Starting point and terminal are fixed. The environment and experimental results are shown 
in Figure 2. 
 

 
 

Figure 2: Path planning experiment of U-shaped obstacles 
 
 In 30 simulation experiments, when μ is 1.0, 0.8 or 0.6, the robot can successfully plan path A or 
path B. The probabilities of path A and path B are 0.533 and 0.467. The results show that when the 
environment is partial observation for the robot, the robot can still plan an optimal and collision-free 
path from starting node to target node in U-shaped environment. This proves that the algorithm in this 
paper features strong robustness and optimizing capacity. 
 
Environment simulation of random obstacles 
 To prove the universality of the algorithm in this paper, a larger and more complex environment 
is generated at random for path planning. Simulate a10 10× area and divide the environment into 1001 1×

grids. Starting point and terminal are fixed. Each grid is placed with obstacles at random, as shown in 
Figure 3. 
 μ is 1.0, 0.8 and 0.6, 10 simulation experiments are conducted. To simplify the complexity of 
path planning, when the reward values are the same, the paths without swerving are firstly selected, and 
the experimental results are shown in TABLE 2. 
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Figure 3: Experiment of random environment path planning 
 

TABLE 2: Path planning results under different detection accuracy rates 
 

μ  Path No. 
1.0 2, 12, 13, 14, 15, 16, 26, 36, 37, 38, 48, 58, 68, 78, 88, 98, 99, 100 
0.8 2, 12, 13, 14, 15, 16, 26, 36, 37, 38, 48, 58, 68, 78, 88, 98, 99, 100 
0.6 2, 12, 13, 14, 15, 16, 26, 36, 37, 38, 39, 49, 59, 68, 78, 88, 98, 99, 100 

 
 It can be seen from the data of planned path algorithm that as the accuracy rate of robot detection 
reduces, the robot’s planed paths are somewhat different but can reach the targets. When μ is 1.0 and 0.8, 
the globally optimal paths are obtained by the robot according to the planning. When it is reduced to 0.6, 
it can be seen that 39, 49, 59 and 69 are the grids with lower collision rates although the planed paths are 
relatively weaker than the optimal paths. This has ensured the collision-free path planning under 
relatively low detection accuracy rate, and the robot can adapt to a more complex environment. 
 

CONCLUSION 
 

 Aiming at the problems that the calculated amount of path search of mobile robot is huge and it 
gets into the local optimum easily in the dynamic and complex environment, this paper cites the 
probability theory and proposes a global path planning algorithm based on POMDP model. Aiming at 
the inaccurate detection for unknown obstacles and uncertainty of robot movement, the prior 
information of the system is used to set up state transition model and observation model. Globally 
optimal solution is obtained by value iterative algorithm. The method based on belief point pruning 
policy tree is adopted to reduce the algorithm complexity. Simulation experiments are conducted in 
multiple complex environments to realize the optimal and collision-free path planning from starting 
node to target node and verify the algorithm efficiency, robustness and universality. 
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