Research on the evaluation of the physical quality of adolescents with intuitionistic fuzzy information

Zhang Jianye*, Wang Yanjun
Baotou Railway Vocational & Technical College, Baotou, Inner Mongolia, 014060, (CHINA)
E-mail: bt-zjy@163.com

ABSTRACT
Several years’ monitoring showed a consistent drop of adolescents’ physical activity in China, which brings widespread social concern. If we don’t do anything about it, there will not enough talents and arms in the future, which inevitably affect Chinese’s boom and strong. Especially recent ten years, after some policy for intervention, but it didn’t work very obviously. Therefore, studying the factors and putting forward the corresponding countermeasures have important theoretical and practical significance. In this paper, we utilize the intuitionistic fuzzy Einstein weighted average (IFEW) operator for evaluating the physical quality of adolescents to aggregate the intuitionistic fuzzy information corresponding to each alternative and get the overall value of the alternatives, then rank the alternatives and select the most desirable one (s) according to the score function and accuracy function of the overall value of the alternatives. Finally, an illustrative example is given.

KEYWORDS
Evaluation; Intuitionistic fuzzy numbers; Intuitionistic fuzzy eieinstein weighted average (IFEW) operator; Physical quality.

INTRODUCTION
Several years’ monitoring showed a consistent drop of adolescents’ physical activity in China, which brings widespread social concern. If we don’t do anything about it, there will no enough talents and arms in the future, which inevitably affect Chinese’s boom and strong. Especially recent ten years, after some policy for intervention, but it didn’t work very obviously. Therefore, studying the factors and putting forward the corresponding countermeasures have important theoretical and practical significance. From the angle of gene and nutrition: gene is the precondition of development of body, which let its formation and development possible; either poor nutrition or too much nutrition makes physical quality decreased, so, the prevalence of overweight and obesity of Chinese adolescents is a cause of physical quality decline of adolescents. From the impact of environmental factors: primary and high school sports area reduced gradually; the teacher shortage of primary and middle school is rather serious, and the university teachers decreased ceaselessly; exam-oriented education had enormous influence on school sports and adolescent physical quality. Interviews displayed that the most fundamental factor of the decline is the occupied their time and resources in sports.
lescent behavior and lifestyle factors associated with physical activity reduced which is the direct cause of decline in physical quality. Through the survey we found adolescent physical activity changes: PE intensity was reduced; the extracurricular sports activity for undergraduate was reduced; the proportion of undergraduate and middle school students who used positive way to and from school was reduced; labor time was reduced; high school students’ extracurricular physical exercise was reduced; students’ spring, summer camp and other outdoor activities were reduced. In accordance with the use and disuse theory: as the amount of physical activity reduce, the utilization rate of the skeletal muscle and other organs about the activity will reduce, leading to organ function degradation, then the decline of physical quality. To raise adolescents’ physical quality, we need coordination of every main body. Government: strengthen the enforcement of related policies, regulations and laws; increase the investment of school sports; give full play to the government in education outside of school in the development of the leading responsibility; continue to promote the sports test system; pay attention to the issues related security. Society: initiative health style; to enhance education for all-around development and strive to create youth sports environment; to increase physical exercise on the mental influences research and advocacy; to strengthen safety education. School: to strengthen and improve the work of school sports; to expand the duty and function of school plays; to bring school into play a main role in improving students’ physical qualities; to control weight of adolescents. Parents: establish correct concept of talent and pay attention to the overall development of students; have an exercise habit which make good examples for children, or attend exercise; should cooperate with school, so that students establish healthy lifestyle, improving the level of physical activity; should actively participate in activities such as “walking school bus” volunteer work. Adolescents: should establish lofty ideals and long-term goal, attach importance to all-round development in particular physical quality enhancement, put aside for the future competitive advantage; establish “sports life” concept; participate in other activities to increase the amount of daily physical activity.

The aim of this paper is to investigate the problems for evaluating the physical quality of adolescents with intuitionistic fuzzy information. We utilize the intuitionistic fuzzy Einstein weighted average (IFEWA) operator to aggregate the intuitionistic fuzzy information corresponding to each alternative and get the overall value of the alternatives, then rank the alternatives and select the most desirable one (s) according to the score function and accuracy function of the overall value of the alternatives. The remainder of this paper is set out as follows. In the next section, we introduce some basic concepts related to intuitionistic fuzzy sets. In Section 3 we introduce the problems to evaluate the physical quality of adolescents with intuitionistic fuzzy information. Then, we utilize the intuitionistic fuzzy Einstein weighted average (IFEWA) operator to aggregate the intuitionistic fuzzy information corresponding to each alternative for evaluating the physical quality of adolescents and get the overall value of the alternatives, then rank the alternatives and select the most desirable one (s) according to the score function and accuracy function of the overall value of the alternatives. In Section 4, an illustrative example is pointed out. In Section 5 we conclude the paper and give some remarks.

PRELIMINARIES

Based on the intuitionistic fuzzy sets\(^{[7-10]}\), Xu & Yager\(^{[11]}\) and Xu\(^{[12]}\) gave some intuitionistic fuzzy aggregation operators as listed below:

For a collection of IFVs
\[
\tilde{a}_j = \left(\mu_j, \upsilon_j\right) (j = 1, 2, \cdots, n),
\]

(1) The intuitionistic fuzzy weighted averaging (IFWA) operator\(^{[12]}\):
\[
\text{IFWA}_w (\tilde{a}_1, \tilde{a}_2, \cdots, \tilde{a}_n) = \sum_{j=1}^{n} \left(\omega_j \tilde{a}_j\right) = \left\{1 - \prod_{j=1}^{n} (1 - \mu_j)^{\omega_j} \right\} \prod_{j=1}^{n} v^{\omega_j}
\]

(1)

where \(\omega = (\omega_1, \omega_2, \cdots, \omega_n)^T\) be the weight vector of
\[
\tilde{a}_j (j = 1, 2, \cdots, n), \text{ and } \omega_j > 0, \sum_{j=1}^{n} \omega_j = 1.
\]

(2) The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator\(^{[12]}\):
\[
\text{IFOWA}_\sigma (\tilde{a}_1, \tilde{a}_2, \cdots, \tilde{a}_n) = \sum_{j=1}^{n} \left(\sigma_j \tilde{a}_j\right) = \left\{1 - \prod_{j=1}^{n} (1 - \mu_j)^{\sigma_j} \right\} \prod_{j=1}^{n} v^{\sigma_j}
\]

(2)

where \((\sigma(1), \sigma(2), \cdots, \sigma(n))\) is a permutation of
(1, 2, ⋯, n), such that \(\tilde{a}_{i(j-1)} \geq \tilde{a}_{i(j)} \) for all \(j = 2, \cdots, n \) and \(\omega = (w_1, w_2, \cdots, w_n)^T \) is the aggregation-associated vector such that \(w_j \in [0, 1], \sum_{j=1}^{n} w_j = 1 \).

In the following, we shall introduce the Einstein operations on intuitionistic fuzzy sets and analyze some desirable properties of these operations. Motivated by Einstein operations, let the t-norm \(T \) and t-conorm \(S \) be Einstein product \(T'' \) and Einstein sum \(S'' \) respectively, then the generalised intersection and union on two IFSs \(A \) and \(B \) become the Einstein product (denoted by \(\tilde{a}_1 \Theta \tilde{a}_2 \)) and Einstein sum (denoted by \(\tilde{a}_1 \oplus \tilde{a}_2 \)) on two IVIFSs \(\tilde{a}_1 \) and \(\tilde{a}_2 \), respectively, as follows:

\[
\tilde{a}_1 \Theta \tilde{a}_2 = \left(\frac{\mu_1 \mu_2}{1 + (1-\mu_1)(1-\mu_2)}, \frac{\nu_1 + \nu_2}{1 + \nu_1 \nu_2} \right)
\]

\(\tilde{a}_1 \oplus \tilde{a}_2 = \left(\frac{\mu_1 + \mu_2}{1 + \mu_1 \mu_2}, \frac{\nu_1 \nu_2}{1 + (1-\nu_1)(1-\nu_2)} \right) \)

\(
\lambda \tilde{a}_1 = \left(\frac{1}{\lambda} \right)^{\frac{1}{\lambda}} \frac{1}{\lambda^{\frac{1}{\lambda}}} (1-\mu_1)^\lambda (1-\mu_2)^\lambda, \frac{2\nu_1}{(1-\nu_1)^\lambda (1-\nu_2)^\lambda} \right) \), \(\lambda > 0 \); \(\lambda \tilde{a}_1 \)

\[
\lambda \tilde{a}_1 = \left(\frac{1}{\lambda} \right)^{\frac{1}{\lambda}} \frac{1}{\lambda^{\frac{1}{\lambda}}} (1-\mu_1)^\lambda (1-\mu_2)^\lambda, \frac{2\nu_1}{(1-\nu_1)^\lambda (1-\nu_2)^\lambda} \right) \), \(\lambda > 0 \).

Definition 4. Let \(\tilde{a}_j = (\mu_j, \nu_j) \) \((j = 1, 2, \cdots, n) \) be a collection of intuitionistic fuzzy values, and let \(\text{IFEWA}: Q^* \to Q \), if

\[
\text{IFEWA}_\omega (\tilde{a}_1, \tilde{a}_2, \cdots, \tilde{a}_n) = \Theta_{j=1}^{n} \omega_j \tilde{a}_j
\]

\[
= \left(\prod_{j=1}^{n} (1+\mu_j)^\omega_j - \prod_{j=1}^{n} (1-\mu_j)^\omega_j, \frac{2\prod_{j=1}^{n} \nu_j^{\omega_j}}{\prod_{j=1}^{n} (1+\nu_j)^\omega_j + \prod_{j=1}^{n} (1-\nu_j)^\omega_j} \right)
\]

where \(\omega = (\omega_1, \omega_2, \cdots, \omega_n)^T \) be the weight vector of \(\tilde{a}_j \) \((j = 1, 2, \cdots, n) \), and \(\omega_j > 0, \sum_{j=1}^{n} \omega_j = 1 \), then \(\text{IFEWA}_\omega \) is called the intuitionistic fuzzy Einstein weighted averaging (IFEWA) operator.

It can be easily proved that the IFEWA operator has the following properties:

Theorem 1. (Idempotency) If all \(\tilde{a}_j \) \((j = 1, 2, \cdots, n) \) are equal, i.e. \(\tilde{a}_j = \tilde{a} \) for all \(j \), then

\[
\text{IFEWA}_\omega (\tilde{a}_1, \tilde{a}_2, \cdots, \tilde{a}_n) = \tilde{a}
\]

Theorem 2. (Boundedness) Let \(\tilde{a}_j \) \((j = 1, 2, \cdots, n) \) be a collection of IFVN, and let \(\tilde{a}^-= \min_j \tilde{a}_j, \tilde{a}^+= \max_j \tilde{a}_j \)

Then

\[
\tilde{a}^- \leq \text{IFEWA}_\omega (\tilde{a}_1, \tilde{a}_2, \cdots, \tilde{a}_n) \leq \tilde{a}^+
\]

Theorem 3. (Monotonicity) Let \(\tilde{a}_j \) \((j = 1, 2, \cdots, n) \) and \(\tilde{a}'_j \) \((j = 1, 2, \cdots, n) \) be two set of IFVN, if \(\tilde{a}_j \leq \tilde{a}'_j \), for all \(j \), then

\[
\text{IFEWA}_\omega (\tilde{a}_1, \tilde{a}_2, \cdots, \tilde{a}_n) \leq \text{IFEWA}_\omega (\tilde{a}'_1, \tilde{a}'_2, \cdots, \tilde{a}'_n)
\]

RESEARCH ON THE EVALUATION OF THE PHYSICAL QUALITY OF ADOLESCENTS WITH INTUITIONISTIC FUZZY INFORMATION

The following assumptions or notations are used to represent the problems for evaluating the physical quality of adolescents with intuitionistic fuzzy information. Let \(T = \{S_1, S_2, \cdots, S_m\} \) be a discrete set of alternatives. Let \(G = \{G_1, G_2, \cdots, G_n\} \) be a set of attributes. The information about attribute weights is completely known. Let \(\omega = (\omega_1, \omega_2, \cdots, \omega_n) \) be the weight vector of attributes, where \(\omega_j \geq 0, j = 1, 2, \cdots, n \). Suppose that \(\tilde{R} = (\tilde{r}_{ij})_{nm} = (\mu_{ij}, \nu_{ij})_{nm} \) is the intuitionistic fuzzy decision matrix, where \(\mu_{ij} \) indicates the degree that the alternative \(A_i \) satisfies the attribute \(G_j \) given by the decision maker, \(\nu_{ij} \) indicates the degree that the alternative
A_i doesn’t satisfy the attribute G_j given by the decision maker D_k, \(\mu_j \in [0,1] \), \(\nu_j \in [0,1] \), \(\mu_j + \nu_j \leq 1 \), \(i = 1, 2, \cdots, m \), \(j = 1, 2, \cdots, n \), \(k = 1, 2, \cdots, t \).

In the following, we apply the IFEWA operator to MADM for evaluating the physical quality of adolescents with intuitionistic fuzzy information.

Step 1. Utilize the decision information given in matrix \(\hat{R} \), and the IFEWA operator to derive the overall preference values \(\tilde{r}_i \) \((i = 1, 2, \cdots, m) \) of the alternative \(S_i \), where \(\omega = (\omega_1, \omega_2, \cdots, \omega_n)^T \) is the weighting vector of the attributes.

Step 2. Calculate the scores \(S(\tilde{r}_i) \) \((i = 1, 2, \cdots, m) \) of the overall intuitionistic fuzzy values \(\tilde{r}_i \) \((i = 1, 2, \cdots, m) \) to rank all the alternatives \(S_i \) \((i = 1, 2, \cdots, m) \) and then to select the best one (s).

Step 3. Rank all the alternatives \(S_i \) \((i = 1, 2, \cdots, m) \) and select the best one (s) in accordance with \(S(\tilde{r}_i) \) and \(H(\tilde{r}_i) \) \((i = 1, 2, \cdots, m) \).

Step 4. End.

NUMERICAL EXAMPLE

This section presents a numerical example to evaluate the physical quality of adolescents with intuitionistic fuzzy information to illustrate the method proposed in this paper. There are five adolescents \(A_i \) \((i = 1, 2, 3, 4, 5) \) for four attributes \(G_j \) \((j = 1, 2, 3, 4) \). The four attributes include endurance \((G_1) \), movement speed \((G_2) \), sports power \((G_3) \) and flexibility and sensitivity of the movement \((G_4) \), respectively. The physical quality of five adolescents \(A_i \) \((i = 1, 2, \cdots, 5) \) are to be evaluated using the intuitionistic fuzzy information by the decision maker under the above four attributes, as listed in the following matrix.

\[
\begin{align*}
G_1 & \quad G_2 & \quad G_3 & \quad G_4 \\
A_1 & \quad (0.6,0.4) & \quad (0.5,0.3) & \quad (0.8,0.1) & \quad (0.5,0.2) \\
A_2 & \quad (0.5,0.3) & \quad (0.7,0.3) & \quad (0.5,0.2) & \quad (0.6,0.2) \\
A_3 & \quad (0.7,0.2) & \quad (0.6,0.4) & \quad (0.5,0.3) & \quad (0.6,0.2) \\
A_4 & \quad (0.5,0.4) & \quad (0.5,0.3) & \quad (0.4,0.4) & \quad (0.8,0.2) \\
A_5 & \quad (0.6,0.3) & \quad (0.7,0.3) & \quad (0.5,0.2) & \quad (0.6,0.2) \\
\end{align*}
\]

Then, we utilize the approach developed to evaluate the physical quality of adolescents in order to learn the physical quality of adolescents.

Step 1. Utilize the IFEWA operator, we obtain the overall preference values \(\tilde{r}_i \) of the physical quality of adolescents \(A_i \) \((i = 1, 2, 3, 4, 5) \).

\[\tilde{r}_1 = (0.56,0.37), \tilde{r}_2 = (0.46,0.32), \tilde{r}_3 = (0.59,0.35) \]
\[\tilde{r}_4 = (0.67,0.38), \tilde{r}_5 = (0.48,0.21) \]

Step 2. Calculate the scores \(S(\tilde{r}_i) \) \((i = 1, 2, 3, 4, 5) \) of the overall intuitionistic fuzzy values \(\tilde{r}_i \) \((i = 1, 2, 3, 4, 5) \)

\[S(\tilde{r}_1) = 0.19, S(\tilde{r}_2) = 0.14, S(\tilde{r}_3) = 0.24 \]
\[S(\tilde{r}_4) = 0.29, S(\tilde{r}_5) = 0.27 \]

Step 3. Rank all the physical quality of adolescents in accordance \(A_i \) \((i = 1, 2, 3, 4, 5) \) with the scores \(S(\tilde{r}_i) \) \((i = 1, 2, 3, 4, 5) \) of the overall intuitionistic fuzzy values \(\tilde{r}_i \) \((i = 1, 2, 3, 4, 5) \) : \(A_2 \succ A_4 \succ A_5 \succ A_3 \succ A_1 \), and thus the most desirable physical quality of adolescents is \(A_2 \).

CONCLUSION

Several years’ monitoring showed a consistent drop of adolescents’ physical activity in China, which brings widespread social concern. If we don’t do any-
thing about it, there will not enough talents and arms in
the future, which inevitably affect Chinese’s boom and
strong. Especially recent ten years, after some policy
for intervention, but it didn’t work very obviously. There-
fore, studying the factors and putting forward the cor-
responding countermeasures have important theoreti-
cal and practical significance. In this paper, we utilize
the intuitionistic fuzzy Einstein weighted average
(IFEWMA) operator for evaluating the physical quality of
adolescents to aggregate the intuitionistic fuzzy infor-
mation corresponding to each alternative and get the
overall value of the alternatives, then rank the alterna-
tives and select the most desirable one (s) according to
the score function and accuracy function of the overall
value of the alternatives. Finally, an illustrative example
is given.

REFERENCES

[1] Yuan Jiang, Dongming Jiang; “The Security Assess-
ment Method of Wireless Sensor Network with In-
terval Grey Linguistic Variables”, JDCTA: Interna-
tional Journal of Digital Content Technology and its
[2] Ying Fang; “A Model for E-commerce Risk As-
essment with Uncertain Linguistic Information”,
AISS: Advances in Information Sciences and Serv-
ce Sciences, 3(7), 296-301 (2011).
Method for Investment Risk Assessment of Real
Estate based on the Uncertain Linguistic Variables”,
AISS: Advances in Information Sciences and Serv-
ce Sciences, 3(7), 35- 43 (2011).
Approach to Archives Websites’ Performance Evalua-
tion in Our Country with Interval Intuitionistic
Fuzzy Information”, AISS: Advances in Informa-
tion Sciences and Service Sciences, 3(7), 112–117
(2011).
[5] Hong Tan, Guiwu Wei; “OWCLCOA Operator and
its Application to Comprehensive Evaluating Mod-
eling of Brand Extension in Uncertain Linguistic
Setting”, JCTI: Journal of Convergence Informa-
and their application to multiple attribute group de-
cision making”, Knowledge-Based Systems, 31,
176-182 (2012).
decision making with incomplete weight informa-
tion in intuitionistic fuzzy setting”, Knowledge-Based
[8] Guiwu Wei; “Some induced geometric aggregation
operators with intuitionistic fuzzy information and
their application to group decision making”, Applied
[9] Peide Liu, Y.Su; “The extended TOPSIS based on
trapezoid fuzzy linguistic variables”, Journal of Con-
vergence Information Technology, 5(4), 38-53
(2010).
with 2-tuple Linguistic Information”, AISS: Ad-
vances in Information Sciences and Service Sci-
decision making based on the ET-WG and ET-OWG
operators with 2-tuple linguistic information”, Ex-
pert Systems with Applications, 37(12), 7895-7900
(2010).
[12] Guiwu Wei; “Some generalized aggregating oper-
ators with linguistic information and their application
32-38, 2011.
guistic representation model for computing with
words”, IEEE Transactions on Fuzzy Systems, 8(6),
746-752 (2000).
[14] F.Herrera, L.Martinez; “A model based on linguistic
2-tuples for dealing with multigranularity hierar-
chical linguistic contexts in multiexpert decision-
making”, IEEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics, 31(2), 227-234
[15] Guiwu Wei, Xiaofei Zhao; “Some dependent ag-
gregation operators with 2-tuple linguistic informa-
tion and their application to multiple attribute group
decision making”, Expert Systems with Applications,
39, 5881-5886 (2012).
[16] Zeshui Xu; “An approach based on the uncertain
LOWG and induced uncertain LOWG operators to
group decision making with uncertain multiplicative
linguistic preference relations”, Decision Support
[17] Guiwu Wei; “Uncertain linguistic hybrid geometric
mean operator and its Application to group decision
making under uncertain linguistic environment”, In-
ternational Journal of Uncertainty, Fuzziness and
[18] Zeshui Xu; “Induced uncertain linguistic OWA operators applied to group decision making, Information fusion, 7(2), 231-238 (2006).
