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ABSTRACT 
 
This paper provides a remote vehicle diagnosis system, which is designed to locate the
specific time when an occasional malfunction happened from the abundant vehicle’s ECU
data flow. The system has been designed with an ability to learn by itself, using the wrong
cases to retrain the classifier and raise system diagnosis rate. Through studying the
occasional low-speed flameout, we come to a conclusion that 83.3% diagnosis rate and
nanosecond-class diagnosis efficiency can totally meet requirement. 
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Figure 2 : The flowchart of the remote intelligent diagnosis system 
 

 
 

Figure 3 : Waveforms of the parameters related to occasional low-speed flameout malfunctions 
 

Diagnosing vehicle low-speed flameout malfunctions 
 We take low-speed flameout as an example. The relative parameters include engine speed (N), relative load (RL), 
throttle valve angle (AN1), accelerator pedal angle (AN2), intake air amount (GI), average fuel injection time (T), fuel 
pressure (P1) and boost pressure (P2). Around the occurrence of low-speed flameout malfunction, the waveforms of the 
engine speed, the relative load and the throttle valve angle are shown in Fig 3. 
 To make the classifier compatible, we sample data of three fault vehicles before and after the malfunctions and 
extract 100 data sets for training samples. Meanwhile, there are only 2 kinds of decision attributes D, where “1” stands for 
low-speed flameout malfunction, while “0” represents normal. The data are tabulated in Table 1. Moreover, data of another 
fault vehicle around its malfunction are extracted for test samples, totaling 30 data sets, which are shown in Table 2. 
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CONCLUSIONS 
 

 In this study, KNN classification algorithm is used to remotely diagnosis vehicle malfunctions. The following 
conclusions can be achieved: 
 1. KNN classification algorithm performs well in remote intelligent vehicle diagnosis, and it meets the demand on 
diagnosis efficiency and accuracy. 
 2. The self-learning mechanism is used to establish and improve the reference samples of the intelligent diagnosis 
system, avoiding the blindness and one-sidedness of extracting samples, which is a very effective method. 
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