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ABSTRACT 
 
Study process of general uniqueness of solutions to nonlinearproblems is sophisticated. 
This process involves a wide scope of mathematics. The research process is conducted 
with reference to some supporting documents and papers. Some theorems and reasoning 
process are deducted. This does not only furnish good theoretical basis for this research, 
but also provide comprehensiveness for general uniqueness of solutions to 
nonlinearproblems. For the research idea, this paper contains some introduction to 
theorem of general uniqueness, and then clearly defines its application sphere. Based on 
theorem�s features, its reasoning process is clearly demonstrated to make its application 
more successful. This also enlarges its application scope; then we try to research and 
analyze several nonlinearproblems based on corresponding theorems and their 
applications, which  makes research more detailed and clear; at last, we discuss the unique 
fixed point of most non-expansive mappings, and this is a supplement to other 
classification that involved in general uniqueness of solutions to nonlinearproblems. All 
these make this research scientific and integral. 
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INTRODUCTION 
 
 From the perspectives of theorem and definition, uniqueness and general uniqueness are fundamentally different. 
Uniqueness serves that the statement is true; however, the general uniqueness applies to the most, not showing they are true. 
Their corresponding statements are given in the first part of this research; the following part is about the proving of theorems 
and deduced theorems, which makes deduction effective and makes it become supplement to the theorems of uniqueness and 
general uniqueness. Thus, nonlinearproblems can be solved from a wider scope; the last part is about theorem application. 
The practice shall verify theorem. This is the principal we are following in research process. Also the last part expounds 
general uniqueness of solutions to nonlinearproblems and makes this paper more scientific. We hope this could lay good 
theory and practice foundations to the further research. 
 

THEOREMS OF UNIQUENESS AND GENERAL UNIQUENESS 
 
 From relevant bibliographies, we can see that theorems of uniqueness and general uniqueness are not that complex. 
But they play a pivotal role. Therefore, for the sake of integrity, this research contains the following statement: 
 We assume that, M and X are two topological spaces on Hausdorff, and S is one of the set-valued mappings between 
M→2

X; u M . Under the conditions of ( )C , we can effectively research the uniqueness. 

 ( )C  has some certain relation with any open neighborhood of any two open sets. 1 2 3,G G X , and 1 2G G   . 

This makes 1( )S u G  and   not equal. However, there is ' \{ }u o u  in open neighborhood O that makes 1( )S U G  and   

equal[1]. 
 We can easily see from the above statement that, ( )S u always works as a single point set. It is generally sufficient 

under condition (C), thus we can see its necessity. Even sometimes, its necessity & sufficiency can exist simultaneously. 
From the above statement, we can get corresponding theorem as follows: 
 Theorem 1: Assume S is one set-valued mapping of M→2X between u, and it is semi-continuous. As a single 
point set, u would be effective under condition （C）. 
 Proof: Assume 1G  and 2G X  are any two open set, and they meet two conditions that 1 2G G    and ( )S u

∩G1 is not equal to  . Then we assume, O is any open neighborhood of u. As mentioned in the above conditions, ( )S u  is a 

single point set, this makes 1( )S u G . However, S is semi-continuous on u. Then there exists any point ' \{ }u o u  on any 

open neighborhood O1 of u, and this ensures 1( )S u G . Then, we get G1∩G2= , and we can also get the following relation: 

 

2( ')S u G         (1) 

 
 This proof process can effectively demonstrate that (C) is effective in u. 
 Theorem 2: We assume that S is a set-valued mapping between M→2

X, and it is lower semi-continuous on u. From 
the last proving process, we can see that (C) is effective in u. Then ( )S u  naturally is single point set. 

 Proof: From the above stated theorem we can see that, if S is lower semi-continuous on u, then there is ( )x S u  to 

make any open neighborhood 1U  is within u�s open neighborhood O  The two conditions can are available: for any open 

neighborhood, 'u O , and ( ')S u U   [2]. However, through proof by contradiction, we can also effectively verify. We 

suppose, S（u）isn�t single point set, and ' ( )x S u  will exist and 'x x .  From the separability of Hausdorff�s space, we 

can know two open sets are generated:  1G  and 2 3G X . If we make 1'x G , and 1 2G G   , then we will get two 

conditions: 
 

1( )S u G    and 2( )S u G         (2) 
 

 On one side, as G2 is one open neighborhood in x , and the above proof process sheds light that u�s open 

neighborhood is , if we make one of them 'u o then we can get the following condition: 
 

2( ')S u G        (3) 

 
 However, on the other side, as 1 2G G   , meanwhile, ( ')S u U     and condition （C） are effective. 

Previously stated open neighborhood  exists, thus finally we can get: 
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2( ')S u G       (4) 

 This contradicts with previously proved opinion. But we can see ( )S u is a single point set. Therefore, the proof 

process finishes. 
 Deduction 3: We assume S is lower semi-continuous on U, and （C） is effective on U, then we can prove ( )S u  is 

single point set. 
 We can draw the following theorems based on theorem 1 and theorem 2 
 Theorem 4: We assume that S is both upper semi-continuous and lower semi-continuous, thus ( )S u  is single point 

set and it makes condition （C） effective on U. 
 Deduction 5: We assume S is continuous on U, then ( )S u  is single point set and it makes condition （C） effective 

on u. 
 From the above theorem and deduction, we can get: 
 Theorem 6: Assume M as Baire space, X as metric space. Then S is a USCO map between M→2

X. If (C) is effective 
under every condition in Baire space, and then every dense residual set can exist within Baire space. However, if we make 

any Cech , and if ( )S u is single point set, then, USCO mapping exists in Q set as single value form. 

 Deduction 7: This deduction is valuable, and it is widely used in theorem application. By process of above 

mentioned deduction and proof, we assume M is complete space of Cech . X is still a metric space, and then S is a USCO 

mapping between M→2
X. However, if every condition (C) is effective in Cech , thus every dense residual set can exist 

within Cech  space. if we make any u Q , then we get ( )S u is single point set, meanwhile, USCO map exists in Q set as 

single value form[3]. 

 Theorem 8: Assume M as Cech �s complete space, and X belongs to . Then S is one USCO mapping between 

M→2
X. If every condition (C) is effective in Cech , thus every dense residual set can exist within Cech  space. If we make 

any u Q , then we get ( )S u is single point set, meanwhile, USCO map exists in Q set as single value form. 

 The following contents are supporting statements to the application of above theorems; meanwhile they are 
scientific practice to uniqueness of solutions to nonlinearproblem. During the assumption, M is problem space where every 

1u M . However, here U is a nonlinear problem, and X is solution space. The nonlinear problem U can be shown in X 

space. S is a set-valued map between M→2
X. For every 1u M , here, ( )S u  is set to be a set of all solution to nonlinear 

problem u, and we make value rage is not 0. However, ( )S u is single point set and when we use { }x  to represent, x  is the 

only solution to nonlinear problem. When this solution is cast into U, and it is upper semi-continuous or lower upper semi-
continuous, we just need to make every condition (C) effective in this point set U. By this proof, we can get that there is just 
one solution to nonlinear problem u. It is unique.  However, for the uniqueness of solution to nonlinear problems, it does not 
always exist. Thus, we can research via general uniqueness. Relevant research processes involved in theorem 6, deduction 1 
and theorem 8 that concern general uniqueness of solution to nonlinear problems provide basic structure and model[4]. 
 

APPLICATION 
 
 In this process, we mainly aim at the above mentioned theorems, their reasoning process and their application. Also 
we conduct corresponding research about maximum value, minimum value, and vector optimization of nonlinear problems. 
These all serve the discussion process of general uniqueness of solution to nonlinear problems. 
 
There is unique solution to maximin problem of most semi-continuous function 
 We assume that X and Y are two nonempty sets. And f is one of the functions between X Y R  . In this rage, the 

maximin problem can be solved via * *( , )x y X Y  . We make the below equations effective: 

 
max min ( , ) min ( *, ) ( *, *)

y Y y Yx X
f x y f x y f x y

 
    (5) 

 
 In this process, if the condition ( *, *)x y  is available, it can be called a solution to max-min. Meanwhile, it is 

corresponding to the problem. Then we can solve ( *, *)x y X Y   to make the following equation effective: 

 
min max ( , ) max ( , *) ( *, *)

y Y x X x X
f x y f x y f x y

  
    (6) 

 
 Similar to this, usually we call * *( , )x y  as one solution to min-max value. 
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 In achieving the solution to min-max problem, we need to make * *( , )x y X Y   as one saddle point of function f. 

But the condition * *( , )x y  must be not only a solution to min-max value but also to max-min problem. Form the above 

theorems, we can see that, the solution of max-min problem cannot be the solution of min-max problem, thus we can get that 
it is not a saddle point of function f[5]. Even though we have discussed the uniqueness in previous research process, this does 
not mean the research on max-min problem is complete. 
 We assume X and Y as non-empty compact subsets of E and F in topological space. And M1 in max-min problem 
can be defined as: 
 

1 :M f X Y R         (7) 
 
 Here we define distance of any point 1 2 1,f f M  

 

1 1 2 1 2
( , )

( , ) sup ( , ) ( , )
x y X Y

f f f x y f x y
 

        (8) 

 
Strictly-quasi monotonic vector optimization problems have unique solution 
 In this research and discussion, we mainly use unified methods to state interrelated theory, and make sufficient 
research about weakly efficient solution. 
 In research process, we assume X as E�s nonempty compact subset in Hausdorff topological space. And  is 
nonempty closed convex cone in Banach space. Also we make int  C  is not 0[6]. Here, int  C �s implication is in �s 

topological space. Thus we can get int  C �s convex cone by above theorems and deduction, also the condition 

int  int  CC C   can be met. For the value range of  , it shall be over 0, and marked as open ball 

 0 ( ) : :B z H z     and closed ball  ( ) : :B z H z    . 

 Theorem 9: We assume f as a vector-valued function between X→H. Its harmony point *x X  is one effective 
weakly efficient solution. of vector optimization. If any point could meet the condition of y X , then there will be the 

following relation: 
 

( *) ( ) int  f x f y C         (9) 
 
 However, when in cases that nH    and nC


  , the above stated vector problems can change into problem of 

target optimization. Then its weakly efficient solution could meet the following condition: 
 

( *) ( ) int  ,nf x f y y X


      (10) 
 

MOST NONEXPANSIVE MAPPINGS HAVE UNIQUE FIXED POINT 
 
 In this research process, we also use unified methods to conduct corresponding research about unique fixed point of 
nonexpansive mappings. This provides sufficient practice for application of nonlinear problems. 
 During the research, we firstly assume X as a nonempty compact convex set in Banach space. Meanwhile, we 
assume M3 as mapping set of function f within X→Y. We shall ensure that: X→Y is non-expansive. Then we can get mutual 
relation: 
 

( ) ( ) , ,f x f y x y x y X           (11) 

 
 In this relation, we can effectively define distance for any 1 2 3,f f M . 

 

3 1 2 1 2( , ) max ( ) ( )
x X

f f f x f x


         (12) 

 
 For 1 2 3,f f M , we can obviously see f1 and f2 are continuous. This makes corresponding sense for 3 , and make it 

more simple to prove a complete metric space when 3 3( , )M  . 

 However, for any 3f M , we can prove that fixed point function f exist in X via corresponding fixed point 

theorem. We can see from the following equation relation: 
 

 3 ( ) : : ( ) 0S f x X f x x   
 

(13) 
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 In this equation, 3 ( )f S f  effectively defines set-valued map, and it is 3 3: 2XS M  . 

 Proof: As X is nonempty compactset, and based on the above theorem, we just need to effectively prove S3�s closed 

mapping, i.e. 3( )Graph S  is one closed set of M3×X. Then the following equation relation shall be met
[7]. 

 

 3 3 3( ) ( , ) : ( )Graph S f x M X x S f      (14) 

 
 Before proof, we first assume that 3 0 3 3 0, , ( ),n n n n nf M f f M x S f x x X       are effective. We also need to 

prove the condition that 0 3 0( )x S f , by which we can get the below equation relation: 

 
( )n n nf x x   (15) 

 
 As 0 0,n nf f x x   exists and is effective, naturally, the following equation relation can be achieved. 

 

0 0 0 0 0 0

3 0 0

( ) ( ) ( ) ( ) ( ) ( )

                            ( , ) 0

n n n n n n

n n

f x f x f x f x f x f x

f f x x

    

   
 

(16) 

 
 In previous proof process, we make n   as known conditions, thus we can effectively prove 0 0 0( )f x x , and get 

0 3 0( )x S f .  Till now, the proof process finishes. 

 
CONCLUSION 

 
 The above contents are relevant research and proof process about general uniqueness of solutions to several 
nonlinear problems. The key points of this paper are the researches of uniqueness and general uniqueness theorems. In this 
paper, we try to give sufficient deduction and proof process to make this research more theoretical, meanwhile we practically 
apply this research to nonlinear problems. As sufficient discussion about general uniqueness of solution to nonlinear 
problems has not been proposed, this research and proof process have more practical. From the idea of research and proof, 
this can contribute to the extension of theorem and definition; meanwhile contribute to its applications. The research and 
proof process convey our expectation that scholars and relevant researchers could gain more solid theoretical base for their 
further researches. 
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