Regular Ternary Semigroups

Jaya Lalitha G¹, Sarala Y² and Madhusudhana R³

¹Department of Mathematics, KL University, Guntur, Andhra Pradesh, India
²Faculty of Mathematics, National Institute of Technology, Andhra Pradesh, India
³Faculty of Mathematics, V.S.R & N.V.R College, Guntur, Andhra Pradesh, India

Corresponding author: Jaya Lalitha G, Department of Mathematics, KL University, Guntur, Andhra Pradesh, India,
Tel: 040 2354 2127; E-mail: jayalalitha.yerrapothu@gmail.com

Received: May 27, 2017; Accepted: August 29, 2017; Published: September 04, 2017

Abstract

Intriguing properties of regular ternary semigroups and completely regular ternary semigroups were discussed in the article.

Keywords: Regular ternary semigroup; Completely regular ternary semigroup

Introduction

Definition 1

An element x in a ternary semigroup T is said to be a regular if \exists an element $a \in T$ s.t. $xax=x$ [2].

A ternary semigroup is said to be regular if all of its elements are regular.

Theorem 1

The following conditions in a ternary semigroup T are equivalent:

(i) T is regular.
(ii) For any right ideal R, lateral ideal M and left ideal L of T, $RML=R \cap M \cap L$.

© 2017 Trade Science Inc.
(iii) For \(x, y, z \in T \), \(\langle x \rangle_r \langle y \rangle_m \langle z \rangle_l = \langle x \rangle_r \cap \langle y \rangle_m \cap \langle z \rangle_l \).

(iv) For \(x \in T \), \(\langle x \rangle_r \langle x \rangle_m \langle x \rangle_l = \langle x \rangle_r \cap \langle x \rangle_m \cap \langle x \rangle_l \).

Proof

(i) \(\Rightarrow \) (ii) Suppose \(T \) is a regular ternary semigroup. Let \(R, M \) and \(L \) be a right ideal, a lateral ideal and a left ideal of \(T \).

Then clearly, \(RML \subseteq R \cap M \cap L \). Now for \(x \in R \cap M \cap L \), we have \(x = axa \) for some \(a \in T \). This implies that \(x = axa = (axa)(axa)(axa) \in RML \).

Thus, we have \(R \cap M \cap L \subseteq RML \). So we find that \(RML = R \cap M \cap L \).

Clearly, (ii) \(\Rightarrow \) (iii) and (iii) \(\Rightarrow \) (iv).

It remains to show that (iv) \(\Rightarrow \) (i).

Let \(x \in T \). Clearly, \(x \in \langle x \rangle_r \cap \langle x \rangle_m \cap \langle x \rangle_l = \langle x \rangle_r \langle x \rangle_m \langle x \rangle_l \).

Then we have, \(x = (xtT \cup nx)(TxT \cup TXT \cup nx)(TXT \cup nx) \subseteq xTx \).

So we find that \(x \in xTa \) and hence there exists an elements \(a \in T \) such that \(x = axa \). This implies that \(x \) is regular and hence \(T \) is regular.

We note that every left and right ideal of a regular ternary semigroup may not be a regular ternary semigroup.

However, for a lateral ideal of a regular ternary semigroup, we have the following result:

Lemma

Every lateral ideal of a regular ternary semigroup \(T \) is a regular ternary semigroup.

Proof

Let \(L \) be a lateral ideal of regular ternary semigroup \(T \). Then for each \(x \in L \) there exists \(a \in T \) such that \(x = axa \). Now \(x = axa = xaxax = x(axa)x = xpx \) where \(p = axa \in L \). This implies that \(L \) is a regular ternary semigroup.

Definition 2

An ideal \(A \) of a ternary semigroup \(T \) is said to be a regular ideal if \(A \cup RML = R \cap M \cap L \) for any right ideal \(R \supseteq A \), lateral ideal \(M \supseteq A \) and left ideal \(L \supseteq A \).

Remark 1

From Definition 2, it follows that \(T \) is always a regular ideal and any ideal that contains a regular ideal is also a regular ideal.

Now if for any right ideal \(R \), lateral ideal \(M \) and left ideal \(L \); \(RML \) contains a regular ideal, then \(RML = R \cap M \cap L \).

Proposition

A ternary semigroup \(T \) is a regular ternary semigroup if and only if \(\{0\} \) is a regular ideal of \(T \).
Proof
Let \(P \) be the nuclear ideal of a ternary semigroup \(T \), i.e., the intersection of all non-zero ideals of \(T \), \(P \) is the intersection of all non-zero right ideals of \(T \), \(P_m \) is the intersection of all non-zero lateral ideals of \(T \) and \(P_l \) is the intersection of all non-zero left ideals of \(T \). Now if \(P = \{0\} \), then clearly \(P = P_r = P_m = P_l \).

Theorem 2
Let \(T \) be a ternary semigroup and \(P = P_r = P_m = P_l \). Then \(T \) is a regular ternary semigroup if and only if \(P \) is a regular ideal of \(T \).

Proof
If \(P = P_r = P_m = P_l = \{0\} \), then proof follows from proposition. So we suppose that, \(P = P_r = P_m = P_l \neq \{0\} \). Let \(T \) be a regular ternary semigroup. Then from proposition, it follows that \(\{0\} \) is a regular ideal of \(T \). Now, \(\{0\} \subseteq P = P_r = P_m = P_l \) implies that \(P \) is a regular ideal of \(T \), by using Remark 1.

Conversely, let \(P \) be a regular ideal of \(T \). Then \(P \cup RML = R \cap M \cap L \) for any right ideal \(R \supseteq P \), lateral ideal \(M \supseteq P \) and left ideal \(L \supseteq P \) of \(T \). Since \(PPP \) is a right ideal of \(T \) and \(P = P_r \), we have \(P = P_r \subseteq PPP \subseteq RML \).

Consequently, \(P \cup RML = RML \). So \(RML = R \cap M \cap L \) and hence from Theorem 2, it follows that \(T \) is a regular ternary semigroup.

Corollary 1
Let \(T \) be a ternary semigroup and \(P = P_r = P_m = P_l \). Then \(T \) is a regular ternary semigroup if and only if every ideal of \(T \) is regular.

Proof
Suppose \(T \) is a regular ternary semigroup. Then from Theorem 2, it follows that \(P \) is a regular ideal of \(T \). Now \(P = P_r = P_m = P_l \) implies that every non-zero ideal of \(T \) contains the regular ideal \(P \) of \(T \). Consequently, by using Remark 1, we find that every ideal of \(T \) is regular.

Conversely, if every ideal of \(T \) is regular, then \(P \) is a regular ideal of \(T \) and hence from Theorem 2, it follows that \(T \) is a regular ternary semigroup.

Theorem 3
The following conditions in a ternary semigroup \(T \) are equivalent:
(i) \(A \) is a regular ideal of \(T \).
(ii) For \(x, y, z \in T \), \(A \cup \langle x \rangle_r \langle y \rangle_m \langle z \rangle_l = A \cup (\langle x \rangle_r \cap \langle y \rangle_m \cap \langle z \rangle_l) \).
(iii) For \(x \in T \), \(A \cup \langle x \rangle_r \langle x \rangle_m \langle x \rangle_l = A \cup (\langle x \rangle_r \cap \langle x \rangle_m \cap \langle x \rangle_l) \).
(iv) For each \(x \in T \setminus A = A', x = \{a\} \cup \bigcup_{i=1}^{n}xp_i,xq_i,x \cup \bigcup_{i=1}^{n}xr_is_i,ux_i,v_i,x \) for some \(a \in A \) and \(p_i, q_i, r_i, s_i, u_i, v_i \in T \).
Proof

(i) \(\Rightarrow\) (ii) Suppose \(A\) is a regular ideal of \(T\). We note that for \(x, y, z \in T\),

\[A \subseteq (A \cup \{x\}_r), (A \cup \{y\}_m), (A \cup \{z\}_l). \]

Now \(A \cup \{x\} \cap \{y\}_m \cap \{z\} \subseteq (A \cup \{x\}) \cap (A \cup \{y\}_m) \cap (A \cup \{z\}) = A \cup (A \cup \{x\}) \cup (A \cup \{y\}_m) \cup (A \cup \{z\})\) (since \(A\) is regular).

\[\subseteq A \cup AAA \cup A\{y\}_m A \cup A\{y\}_m \{z\} \cup AA\{z\} \cup \{x\}, AA \cup \{x\}, A\{z\} \cup \{x\}, \{y\}_m \cup A \cup \{x\} \cup \{y\}_m \{z\} \]

\[\subseteq A \cup \{x\} \cup \{y\}_m \{z\}. \]

Again \(\{x\} \cup \{y\}_m \{z\} \subseteq \{x\} \cap \{y\}_m \{z\}\) implies that \(A \cup \{x\} \cup \{y\}_m \{z\} \subseteq A \cup \{x\} \cap \{y\}_m \{z\}\).

So we find that \(A \cup \{x\} \cup \{y\}_m \{z\} = A \cup (\{x\} \cap \{y\}_m \{z\})\).

(ii) \(\Rightarrow\) (iii) Put \(y = x\) in (ii) we get (iii).

(iii) \(\Rightarrow\) (iv) We first note that \(\{A \cup \{x\}_r\} = A \cup \{x\} = A \cup \{x\} \cap T \cap T = A \cup \{x\}_r\).

\[= A \cup (xTT \cup nx)TT = A \cup xTTTT \cup nxTT = A \cup \{xTT\}_r = A \cup xTT \]

Similarly we have, \(\{A \cup \{x\}_m\} = A \cup TxT \cup TTxTT\) and \(\{A \cup \{x\}_l\} = A \cup TTa\).

Now \(\{x\} \cap \{x\}_m \cap \{x\}_l \subseteq \{A \cup \{x\}_r\} \cap \{A \cup \{x\}_m\} \cap \{A \cup \{x\}_l\}\)

\[\subseteq A \cap (\{A \cup \{x\}_r\} \cap \{A \cup \{x\}_m\} \cap \{A \cup \{x\}_l\}) \]

\[= A \cup (\{A \cup \{x\}_r\} \cap \{A \cup \{x\}_m\} \cap \{A \cup \{x\}_l\}) \]

\[= A \cup (A \cup xTT)(A \cup TxT \cup TTxTT)(A \cup TTa) \]

\[\subseteq A \cup (xTTx \cup TTxTTx) \]

Since, \(x \in \{x\} \cap \{x\}_m \cap \{x\}_l\) there exists \(a \in A\) and \(p_i, q_i, r_i, s_i, u_i, v_i \in T\) such that

\[x = \{a\} \cup \{x\} \cup \{x\}_m \cup \{x\}_l \]

(iv) \(\Rightarrow\) (i) Let \(R, M\) and \(L\) be any right, lateral and left ideal of \(T\) respectively such that \(R, M, L \supseteq A\). Then clearly, \(A \cup RML \subseteq R \cap M \cap L\). Again, let \(x \in R \cap M \cap L\). Then by using condition (iv), we have

\[x = \{a\} \cup \{x\} \cup \{x\}_m \cup \{x\}_l \]

for some \(a \in A\) and \(p_i, q_i, r_i, s_i, u_i, v_i \in T\). Since

\[\{x\}_m \cup \{x\}_l \subseteq RML, \]

\(x \in A \cup RML\) and hence \(R \cap M \cap L \subseteq A \cup RML\). Thus \(A \cup RML = R \cap M \cap L\). Consequently, \(A\) is a regular ideal.
Theorem 4
Let A be a regular ideal of a ternary semigroup T. For any right ideal R, lateral ideal M and left ideal L of T, if $RML \subseteq A$ then $R \cap M \cap L \subseteq A$.

Proof
Suppose for any right ideal R, lateral ideal M and left ideal L of T, $RML \subseteq A$, where A is a regular ideal of T. Then

$$A \subseteq (A \cup R), (A \cup M), (A \cup L).$$

Now $R \cap M \cap L \subseteq (A \cup R) \cap (A \cup M) \cap (A \cup L)$

$$= A \cup ((A \cup R)(A \cup M)(A \cup L)) \quad \text{[Since } A \text{ is regular]}$$

$$\subseteq A \cup AAA \cup AAL \cup AMA \cup AML \cup RAA \cup RAL \cup RMA \cup RML$$

$$\subseteq A.$$

From Theorem 4, we have the following results:

Corollary 2
A regular and strongly irreducible ideal of a ternary semigroup T is a prime ideal of T.

Corollary 3
Every regular ideal of a ternary semigroup T is a semi prime ideal of T.

Theorem 5
A ternary semigroup T is regular if and only if every ideal of T is idempotent.

Proof
Let T be a regular ternary semigroup and A be any ideal of T. Then $A^3 = AAA \subseteq TTA \subseteq A$. Let $x \in A$. Then there exists $a \in T$ such that $x = axa = axa$. Since A is an ideal and $x \in A$, $axa \in A$. Thus $x = axa = axax \in A^3$.

Consequently, $A \subseteq A^3$ and hence $A^3 = AAA = A$ i.e., A is idempotent.

Conversely, suppose that every ideal of T is idempotent. Let P, Q and R be three ideals of T. Then $PQR \subseteq PTT \subseteq P$, $PQR \subseteq TQT \subseteq Q$ and $PQR \subseteq TTR \subseteq R$. This implies that $PQR \subseteq P \cap Q \cap R$. Also, $(P \cap Q \cap R)(P \cap Q \cap R)(P \cap Q \cap R) \subseteq PQR$. Again, since $(P \cap Q \cap R)$ is an ideal of T, $(P \cap Q \cap R)(P \cap Q \cap R)(P \cap Q \cap R) = P \cap Q \cap R$. Thus $P \cap Q \cap R \subseteq PQR$ and hence $P \cap Q \cap R = PQR$. Therefore, by Theorem 2, T is a regular ternary semigroup.

Theorem 6
A ternary semigroup T is left (resp. right) regular if and only if every left (resp. right) ideal of T is completely semiprime.
Proof
Let \(T \) be a left regular ternary semigroup and \(L \) be any left ideal of \(T \). Suppose \(a^3 = aaa \in L \) for \(a \in T \). Since \(T \) is left regular, there exists an element \(x \in T \) such that \(a = xaa = x(xaa)a = xx(aaa) \in TTL \subseteq L \). Thus \(L \) is completely semiprime.

Conversely, suppose that every left ideal of \(T \) is completely semiprime. Now for any \(a \in T \), \(Ta \) is a left ideal of \(T \). Then by hypothesis, \(Ta \) is a completely semiprime ideal of \(T \). Now \(a^3 = aha \in Ta \). Since \(Ta \) is completely semiprime, it follows that \(a \in Ta \). So there exists an element \(x \in T \) such that \(a = xaa \). Consequently, \(a \) is left regular. Since \(a \) is arbitrary, it follows that \(T \) is left regular.

Equivalently, we can prove the Theorem for right regularity.

Completely Regular Ternary Semigroup

Definition 3
A pair \((p, q)\) of elements in a ternary semigroup \(T \) is known as an idempotent pair if \(pq(pqx) = pqx \) and \((xpq)pq = xpq \) for all \(x \in T \) [3].

Definition 4
Two idempotent pairs \((p, q)\) and \((r, s)\) of a ternary semigroup \(T \) are known as an equivalent, if \(pqx = rsx \) and \(xpq = xrs \) for all \(x \in T \) [3].

In notation we write \((p, q) \sim (r, s)\).

Definition 5
An element \(x \) of a ternary semigroup \(T \) is said to be completely regular if \(\exists \) an element \(a \in T \ \exists \ xax = x \) and the idempotent pairs \((a, x)\) and \((x, a)\) are equivalent.

If all the elements of \(T \) are completely regular, then \(T \) is called completely regular [3].

Definition 6
An element \(x \) of a ternary semigroup \(T \) is known as a left regular if \(\exists \) an element \(a \in T \ \exists \ axa = x \)

Definition 7
An element \(x \) of a ternary semigroup \(T \) is said to be right regular if \(\exists \) an element \(a \in T \ \exists \ xxa = x \)

Theorem 7
A ternary semigroup \(T \) is completely regular then \(T \) is left and right regular. [i.e., \(x \in x^2T \cap Tx^2 \) for all \(x \in T \).]
Proof
Suppose T is a completely regular ternary semigroup. Let \(x \in T \). Then there exists an element \(a \in T \) such that \(xax = x \) and the idempotent pairs \((x, a)\) and \((a, x)\) are equivalent i.e., \(xab = axb \) and \(bxa = bax \) for all \(b \in T \). Now in particular, putting \(b = x \) we find that \(xax = axx \) and \(xaa = xax \). This implies that \(x \in xxT \) and \(x \in Txx \). Hence T is left and right regular.

Theorem 8
A ternary semigroup T is left and right regular then \(x \in x^2Tx^2 \) for all \(x \in T \).

Proof
Suppose that T is both left and right regular. Let \(x \in T \). Then \(\exists p, q \in T \) such that \(x = xxp \) and \(x = qxq \). This implies that \(xpz = qxz = qxz \) for all \(z \in T \).

Now \(x = xxp = x(xxp)p = x^2(xxp)p = x^2q(xx)p = x^2q^2x = x^2q^2x^2 = x^2q^3x \in x^2Tx^2 \). Hence \(x \in x^2Tx^2 \) for all \(x \in T \).

Theorem 9
If T is ternary semigroup \(x \in x^2Tx^2 \) for all \(x \in T \) then T is completely regular.

Proof
Suppose \(x \in x^2Tx^2 \) for all \(x \in T \). Then \(\exists a \in T \) such that \(x = x^2ax^2 \)

Now \(x = x^2ax^2 = x(xax)x = xba \), where \(b = xax \in T \). This implies that T is regular. Also \(xbc = x(xax)c = x^2ax^2c \) and \(bxc = (xax)xc = x^2ax^2c \) for all \(c \in T \). This shows that the idempotent pairs \((x, b)\) and \((b, x)\) are equivalent.

Consequently, T is a completely regular ternary semigroup.

Definition 8
A sub semigroup S of a ternary semigroup T is said to be a bi-ideal of T if \(STST \subseteq S \).

Theorem 10
A ternary semigroup T is completely regular ternary semigroup if and only if every bi-ideal of T is completely semiprime.

Proof
Let T be a completely regular ternary semigroup. Let P be any bi-ideal of T. Let \(p^3 \in P \) for \(p \in T \). Since T is completely regular, from Theorem 10, it follows that \(p \in p^2Tp^2 \). This implies that there exists \(x \in T \) such that \(p = p^2xp^2 = p(p^2xp^2)x(p^2xp^2)p = p^3(xp^2x)p(p^2xp^2)xp^3 = p^3(xp^2x)p^3(xp^2x)p^3 \in PTTP \subseteq P \). This shows that P is completely semiprime.
Conversely, assume that every bi-ideal of T is completely semiprime. Since every left and right ideal of a ternary semigroup T is a bi-ideal of T, it follows that every left and right ideal of T is completely semiprime. Consequently, we have from Theorem 6 that T is both left and right regular. Now by using Theorem 9, we find that T is a completely regular ternary semigroup.

Theorem 11

If T is a completely regular ternary semigroup, then every bi-ideal of T is idempotent.

Proof

Let T be a completely regular ternary semigroup and P be a bi-ideal of T. Clearly T is a completely regular ternary semigroup. Let \(p \in P \). Then there exists \(x \in T \) such that \(p = pxp \). This implies that \(p \in PTP \) and hence \(P \subseteq PTP \). Also \(PTP \subseteq PTP \subseteq P \). Thus we find that \(P = PTP \). Again, we have from Theorem 11 that \(p \in P^2TP \subseteq P^2TP \). This implies that \(p \subseteq P^2TP = P(PTP) = PPP \subseteq P \). Hence \(P^3 \subseteq P \). Therefore every bi-ideal of P is idempotent.

Conclusion

Ternary structures and their speculation, the purported \(n \)-ary structures bring certain expectations up in perspective of their conceivable applications in organic chemistry.

REFERENCES