

Receptor Biology: Gatekeepers of Cellular Communication

Hana Kim*

School of Biochemistry, Seoul National University of Life Sciences, South Korea

Corresponding author: Hana Kim, School of Biochemistry, Seoul National University of Life Sciences, South Korea;

E-mail: hana.kim@lifesci.kr

Received: December 04, 2025; **Accepted:** December 18, 2025; **Published:** December 27, 2025

Abstract

Receptors are specialized proteins located on the cell surface or within the cell that detect and respond to specific extracellular or intracellular signals, playing a central role in cellular communication and signal transduction. They are essential for maintaining homeostasis, regulating growth, mediating immune responses, and coordinating neuronal and hormonal signaling. Receptors can be broadly classified into categories such as G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), ligand-gated ion channels, and nuclear receptors, each employing distinct mechanisms to transmit signals. Dysregulation of receptor function is associated with numerous pathological conditions, including cancer, autoimmune diseases, metabolic disorders, and neurological dysfunctions. Understanding receptor biology provides critical insights into cellular physiology and offers opportunities for therapeutic interventions through receptor-targeted drugs. This article explores the structure, function, and regulatory mechanisms of receptors, highlighting their pivotal role in health and disease.

Keywords: Receptor biology, signal transduction, G protein-coupled receptors, receptor tyrosine kinases, ligand binding, cellular communication

Introduction

Receptors are integral components of cellular machinery that allow cells to perceive and respond to their environment. By recognizing specific ligands such as hormones, neurotransmitters, cytokines, or growth factors, receptors initiate signaling cascades that regulate a wide range of physiological processes. The precise function of receptors is determined by their structure, cellular localization, and downstream signaling partners. Cell surface receptors, such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), interact with extracellular ligands and transduce signals across the plasma membrane to modulate intracellular pathways. GPCRs, one of the largest receptor families, activate heterotrimeric G proteins, leading to the generation of second messengers that orchestrate cellular responses. RTKs, on the other hand, undergo dimerization and autophosphorylation upon ligand binding, triggering cascades such as the MAPK and PI3K-Akt pathways, which regulate cell growth, differentiation, and survival. Ligand-gated ion channels respond rapidly to chemical signals by allowing ion flux across the membrane, critical for synaptic transmission and muscle contraction. Nuclear receptors, located within the cytoplasm or nucleus, bind lipophilic ligands such as steroid hormones and function as transcription factors to modulate gene expression. Beyond signaling, receptors are finely regulated through mechanisms such as endocytosis, desensitization, and post-translational modifications, ensuring that cellular responses are appropriately calibrated. Dysfunctions in receptor signaling are implicated in a broad spectrum of diseases. Aberrant RTK activation contributes to uncontrolled proliferation in cancers, GPCR mutations underlie certain metabolic and cardiovascular disorders, and defective neurotransmitter

Citation: Hana Kim. Receptor Biology: Gatekeepers of Cellular Communication. Biochem Ind J. 19(1):204.

receptor signaling is central to many neurodegenerative and psychiatric conditions. Studying receptor biology not only provides insights into fundamental cellular processes but also informs the development of targeted therapies, including receptor agonists, antagonists, and modulators, which have become mainstays in clinical medicine.

Conclusion

Receptors are vital molecular gatekeepers that translate extracellular and intracellular signals into precise cellular responses. Their diverse structures and mechanisms enable the regulation of physiological processes ranging from metabolism and growth to immune function and neuronal communication. Understanding receptor biology is essential for deciphering the complexities of cellular signaling and offers significant potential for therapeutic innovation. Continued research into receptor structure, function, and regulation promises to advance our knowledge of cellular communication and the treatment of receptor-related diseases.

REFERENCES

1. Daëron M. Fc receptor biology. *Annual review of immunology*. 1997 Apr;15(1):203-34.
2. Schwartz AL. Receptor cell biology: receptor-mediated endocytosis. *Pediatric research*. 1995 Dec;38(6):835-43.
3. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. *Trends in pharmacological sciences*. 2012 Jul 1;33(7):394-404.
4. McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology. *Endocrine reviews*. 1999 Jun 1;20(3):321-44.
5. Mulero-Navarro S, Fernandez-Salguero PM. New trends in aryl hydrocarbon receptor biology. *Frontiers in cell and developmental biology*. 2016 May 11;4:45.