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INTRODUCTION

In the last few years there has been a growing
industrial demand for twin-screw extruders, which
have some advantages over single screw extruders:
(i) the output is pulsation free and only slightly de-
pendent on the properties of extruded materials (ii)
the residence time of each material portion in the
extruder channels is nearly the same (iii) they are
capable of self-cleaning.

Single screw extruders have long been the sub-
ject of thorough theoretical analysis based on the
well-established analytical and numerical methods.
As for twin screw extruders, the problem of math-
ematical modelling is still acute and requires fur-
ther consideration. This paper presents some new
approaches to model the flow and heat transfer pro-
cesses in the channels of twin-screw extruders.

An approximate analysis of twin-screw extrud-
ers is usually based on the Shenkel theory. Accord-
ing to this theory the capacity of extruder is the total
volume of extrusion processed material that becomes
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free per unit time

max 2Q mNV , (1)

where m  a number of thread starts per screw is, N
is the rotation rate and V  is the C-shaped chamber
volume. The net throughput is actually less than the
theoretical value by the amount of leakage flow
through the gaps

max p cQ Q Q Q     , (2)

where pQ  is the net leakage flow due to global

pressure drop which is defined by the die resistance,

cQ  is the net leakage flow due to the local pres-

sure drops in the gaps. The leakage flows can be
calculated when the pressure drops in these gaps
are known. All types of the leaks observed during
co-rotation and counter-rotation of screws have been
discussed elsewhere[1].

A comprehensive analysis of leakage flows for
both the Newtonian and power-law liquids is given
in the papers by Kim with co-authors[2,3]. Although
the analysis has been developed to the level of
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analytical formulae, the calculations of some speci-
fied variants is rather tedious procedure and de-
mands computer calculations. It is hardly probable
that the calculations of velocity and pressure distri-
butions throughout C-shaped chamber could be re-
alized in analytical form, even in the case of iso-
thermal version. In articles[4-9] a few numerical mod-
els of flow in twin-screw extruders have been pro-
posed.

Here we present a method of reducing complex
three-dimensional problem of the flow and heat
transfer in the screw-channels of twin-screw extrud-
ers to a quasi-three dimensional problem in an
equivalent C- shaped chamber. This statement al-
lows the longitudinal flow and the transverse circu-
lation to be taken into account.

STATEMENT OF THE PROBLEM

The twin-screw extruders are produced of two
types: (i) with co-rotating screws having the same
helix angles 1 2  , and (ii) with counter-rotating
screws with helix angles differing in sign 1 2   .

Twin-screw extruders are commonly manufac-
tured with closely intermeshing screws. This results
in high pumping effect and pulsation free output. The
exception is mixing zones with increased transverse
gaps which provide intense material exchange be-
tween screws and as a result high quality mixing.

Consider now an inter flight spacing of screw I
assuming that the transverse gaps are small enough
to ignore the material exchange between the screws
and bearing in mind that the portion of the channel is
occupied by the flights of screw II (Figure 1).

The spatial figure is formed by a family of helix
lines having the following features:
1) The principal normal to a helix line coincides at

each point with the normal to the corresponding
parent cylinder.

2) The tangents to the helix line form a constant
angle with z-axis which is the same as helix angle
 .

3) The helix line of the cylinder has a constant cur-
vature differing from the cylinder radius by a
constant multiplier R Cos  .
To simplify geometry of the design basis we may

bring the ends of the C-shaped chamber in coinci-
dence moving them parallel to z-axis while leaving
the value and relative directions of boundary ve-
locities unchanged. The resulting unclosed torus has
the shape of �bited of bread ring�. By all of wing
for the helix features, the external radius of torus is
set to be equal to the curvature radius of helix line.
The inner radius is calculated by assuming that the
screw and torus are equal in depth. The width of the
torus is equal to the shortest distance between the
flanks of the screw flights. In this case the velocity
and temperature gradients in the radial and trans-
verse directions match exactly, and in the circum-
ferential direction they well approximate the gradi-

ents aligned with the helix lines cos

R



 .

Two single vectors coincident with the direc-
tions of the principal normal and tangent and the
single vector perpendicular to them form the helix
coordinate trihedron. The velocity vector compo-
nents of this system are related to cylindrical coor-
dinates in such a way

,v v v v Cos v Sin v v Sin v Cos
r z

   
     

    , . (3)

Since it is not essential, whether the rotation is
performed by screw or by barrel, it is reasonable to
use the inverted motion at which the screw is fixed

and the extruder barrel and 2O  axis of screw 2 ro-

tate about the 1O  axis. Hence, the points belonging

to screw 1 have zero velocity
0, 0, 0v v v     . (4)

and the velocities of the barrel points are
0, ,v v RCos v RSin        . (5)Figure 1 : A C-shaped chamber with calculated section



Quasi-three dimensional model of polymer flows in ñ-shaped chamber.142

Full Paper
RRPL, 6(4) 2015

Research & Reviews In
Polymer

With the boundary points belonging to screw 2,
the situation is more complicated. In this case the
velocity components depend on the sense of screw
rotation. When the screws are co-rotating, in the in-
verted motion the resulting velocities of all flight
points of screw 2 are seen to be constant and coin-
cident with the x -axis direction (Figure 2a). As-
sume that the point A  belongs to the second screw
and is involved in the translational motion with such
components as

1 ,t tv O ACos v RSin      . (6)

The length of segments 
1O A  changes with the

angle   according to the following equation
2 2

1 1 2 1 22O A O O RO O Cos R   ,

where 1 2 1 2

2 2

O O O O
Cos

R R
   . (7)

The relative motion of the point A, has the com-
ponents

,t tv RCos v RSin      . (8)
Since  -th components of the translational and

relative velocities are equal in modulus but oppo-

site in direction, the resulting velocity 0AV  . From

the similarity of the triangle 1O AE  to the triangle
formed by vectors t r AV V V   , it follows that the
algebraic sum of the velocity projections tV

 and
rV
 on the y  and z axes is equal to zero, and the AV

? vector projection on the x  axis does not depend
on   and may be expressed as

1 2
A
xv O O Cos  . (9)

When the screws are counter-rotating, the trans-
lational motion remains as before, and in the rela-
tive motion the sign of circumferential velocity
changes. The velocity projections of the arbitrary
point on the x, y and z-axes take the form

 1 22 ,

2 ,

0.

A
x

A
y

A
z

v RCos O O Cos

v RSin Cos

v

  

  

 





(10)

At 0  , the resulting velocity is directed hori-
zontally towards the flow. At the intersection points

a) b)

Figure 2 : Scheme to obtain boundary conditions a) co-rotating screws, b) counter-rotating screws)
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of circumferences the horizontal velocity compo-
nent has become zero and the vertical one is equal
to

1 2
A
yv O O Cos  . (11)

Figure 3b. shows the velocity vector distribu-
tion over screw 2 in terms of moving coordinate
system related to screw 1.

For extruder in an operation, the pressure on the
inlet cross-section is defined by hydrodynamic re-
sistance of the die. Note however that this pressure
is produced only by several last flights. In contrast
to the single-screw extruder, the pressure drop in C-
shaped chamber of the twin-screw extruder is of lo-
cal character. The pressure drop at the pumping
flights is taken into account by Cauchy equation be-
ing prescribed on the radial boundaries of the re-
gion

0 0,

2 .p



 

   

    

ó n

ó n
(12)

The boundary conditions (5), (9) or (10) and (12)
are sufficient to close the system of differential equa-
tions of motion written for the C-shaped chamber.

The output of the twin-screw extruder is defined
by the doubled volumetric flow rate through the torus
cross-section. The flow rate through the circular
cross-section corresponds to the leakages through
the gaps between the barrel and flights. Therefore,
although the canonical domain becomes simpler, the

Figure 4 : Velocity vectors of the main flow for counter-
rotating screws

Figure 3 : Velocity vectors of the main flow for co-ro-
tating screws

problem remains three-dimensional in this formula-
tion. By assuming that all components of the veloc-
ity vector are unchanged across the width of the chan-
nel we may reduce the problem to two-dimensional
one with respect to coordinates while maintaining
all three velocity components.

Let us consider the central longitudinal section
of the torus. Now the system of differential equa-
tions of equilibrium and heat transfer can be repre-
sented in cylindrical coordinates assuming that all
derivatives along the z-axis normal to the section

are zero except P z const   .

Figure 5 : Isobars for co-rotating screws Pmax=12.0
MPa
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  , (16)

2

1 1
p r
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C v

r r r r r r r
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    
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.  (17)

Furthermore, the transverse component zv  must satisfy the following conditions

0

( )F

z f

R

v dr Q


 , in intermeshing zone, (18)

1

0

R

z

R

v dr Q , outside intermeshing zone, (19)

which corresponds to prescribing the leakage flow through the gaps between the barrel and the flights
Q  and between the flights of intermeshing screws fQ .

Substituting physical equations of, for example, a power-law fluid into the equilibrium equations and

integrating by parts, we may reduce the problem to the generalized solution  , , , ,r zv v v p t , which satis-
fies the integro-differential equation system
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where , ,iu H   are functions of coordinates having in variational formulation the meaning of virtual ve-

locities, pressure and temperature. The distributed load zS  has physical meaning of total pressure acting

on the screw flight and is unknown value being determined from the system (20-26). To preserve the
symmetry, the equation (25, 26) is multiplied by the arbitrary function and integrated with respect to  .

The system (20-26) is conveniently solved by the finite element method by using a standard procedure.
The solution provides the velocity, temperature and pressure fields as well as the integral characteristics
of the flow: the throughput and pumping capability of one chamber.

It should be noted that the final scheme was obtained on the basis of more rough but easily realized
assumption and allows the tapered screw extruders to be calculated. To solve the problem according to
this scheme by the finite element method, we may use a slightly modified algorithm and program developed
for the single-screw extruder.

RESULTS

Let us consider now the twin-screw extruder with following parameters: 1 100R mm  - is the radius

of the barrel, 0 80R mm  - is the screw root radius; 14    is the angle of the helix line. The calender gap

  may range from 0  to 9 mm  and the side clearances between the screw flights are negligibly small and

taken to be zero. The temperature of the barrel walls and screw flank is 100 C , and the inlet temperature
of the material is 90 C . Following mathematical models considered before, the velocity, pressure and
temperature distributions were calculated for various values of calender gaps in co-rotating and counter-
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rotating screws. Numerical results obtained on the
basis of these models agree fairly well (Figure 6-

10). For the same gap 9 mm   and with the same

rotational speed 10 rpm   the results calculated

by both models differ by less than 10 %. The limited
pumping capability in co- rotating screw is higher
than in counter-rotating screw.

Narrowing of the gap   results in the increased
pumping capability and more non-uniform tempera-
ture field (in zone of calender gap the temperature
increases whereas in the rest part it remains practi-
cally constant).

Figure 6. Isobars for counter-rotating screws Pmax=12.8
MPa

Figure 7 : Isotherms for co-rotating screws, Tmax=112.0
ºC

Figure 8 : Isotherms for counter-rotating screws, Tmax
=110.5 ºC

CONCLUSION

It is clear from the above discussion that the pro-
posed models of twin screw extruders are in ca-
pable of taking into account three-dimensionality of
real material flows in the screw channels and all
leakages through the gaps, which in fact are not too
small to be neglected.

Our models provide data on the processes of
flow and heat-transfer in the middle cross-section
of C-shaped chamber and calender gap only. How-
ever, combined with known two-dimensional mod-
els, which consider the cross-section of C-shaped
channel well apart from the intermeshing zone, and
with the models describing the leakage flows in lon-
gitudinal and side gaps they may be effectively used
to obtain more complete information on the veloc-
ity, pressure and temperature fields in the channels
of twin screw extruders.
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