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ABSTRACT 

A quantitative structure-activity relationship (QSAR) study has been performed on agonist actions of [1,2,4] 
oxadiazoles for S1P1 receptor. The mechanism of action of 3-substuted-[1,2,4] oxadiazoles appeared to be different from that 
of 5-(substituted phenyl)-[1,2,4] oxadiazoles, therefore, these compounds, in that order, have been divided in two categories, 
CTGA and CTGB to develop statistical models that may explain  the agonist action of the series. From highest significant 
models for compounds in CTGA, it appeared that the higher values of the descriptors, MATS1v, MATS4m and MATS5p are 
conducive in improving the agonist action while the functionality such as Al-O-Ar or Ar-O-Ar or R-O-R/R-O-C=X, 
imparting detrimental effect to it,  is undesirable.  Thus, the Moran autocorrelation (MATS) of lags 1, 4 and 5 of a molecule 
weighted, respectively, by atomic van der Waals volumes, atomic masses and atomic polarizabilities remain the leading 
reasons during interaction with receptor. For compounds in CTGB, the higher values of the descriptors BELe2 (the lowest 
eigenvalue no. 2 of Burden matrix/weighted by atomic Sanderson electronegativities) and MATS7p or the descriptors 
MATS7p and C-025 (accounting for the fragment R--CR--R) are beneficial in improving the agonist action of a compound. 
Therefore, the electronic and polarization effects or polarization effect in addition to the structural fragment, R--CR--R 
appeared to be governing features during interaction. PLS analysis has further confirmed the dominance of the CP‐MLR 
identified descriptors. The guidelines, based on the statistically validated models, may facilitate in exploring more potential 
analogues of the series. Applicability domain analysis revealed that the suggested models have acceptable predictability. 
Except one obvious outlier compound from CTGB, all other compounds were within the applicability domain of the 
proposed models and were evaluated correctly. 

Key words: [1,2,4]-Oxadiazole derivatives, S1P1 agonists, Combinatorial protocol in multiple linear regression (CP-MLR) 
analysis, Molecular descriptors, QSAR study. 

INTRODUCTION 

The lysophospholipid sphingosine-1-phosphate (S1P) binds five specific G-protein coupled 
receptors (S1P1-S1P5)1-4 and exerts a variety of biological activities such as vascular maturation, cell 
survival, proliferation, differentitation, migration and chemotaxis5-7. The S1P1 modulates egress of T-
lymphocytes from thymus and peripheral lymphoid organs8, and it was demonstrated9,10 that targeting S1P1 
is sufficient to cause lymphocyte sequestration to thymus and lymphoid organs, without affecting the innate 
immune system and even cellular reactivity of lymphocytes to antigen challenge. Selective S1P1 receptor 
agonists are promisingly developed as a novel immunomodulator. S1P1 receptor has been considered a 
potential target for a variety of immune-mediated diseases, including rheumatoid arthritis, psoriasis and 
multiple sclerosis disease. Recently, a novel class of S1P1 receptor agonists based on the 1,2,4-oxadiazole 
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scaffold with variations at 3- and 5-positions has been reported11. The category A (CTGA) comprise of 
compounds in which position-5 is fixed to 3,5-bis(trifluoromethyl) phenyl moiety and position-3 is varied. 
In category B (CTGB), position-3 is fixed to 1-(4-hydroxy-4-oxo-butanoyl) indolin-5-yl moiety and a 
phenyl ring, attached to position-5, is varied with different meta- and para-substituents. Due to differing 
mode of actions of two categories, the compounds [Fig. 1 (CTGA and CTGB)] of these structures have been 
documented separately in Table 1 and Table 2. The reported study delineating structure-activity 
relationships (SARs) was targeted at the alterations of substituents at different positions and provided no 
rationale to reduce the trial-and-error factors. Hence, in the present communication a 2D-quantitative SAR 
(2D-QSAR) for these analogues has been conducted to provide the rationale for drug-design and to explore 
the possible mechanism of their action. In the congeneric series, where a relative study is being carried out, 
the 2D-descriptors may play important role in deriving the significant correlations with activity profiles of 
the compounds. The novelty and importance of a 2D-QSAR study is due to its simplicity for the calculations 
of different descriptors and their interpretation (in physical sense) to explain the biological activity of 
compounds at molecular level. 

EXPERIMENTAL 

Material and methods 

Data set 

In the present work, the compounds [Table 1-2; Fig. 1 (CTGA and CTGB)] along with their in vitro 
agonist activity values have been taken from the literature11. The human S1P1 EC50 values, determined in 
the HTRF cAMP assay, represents the concentration of the drug needed to suppress lymphocyte levels by 
50% and the same, expressed as –logEC50 on a molar basis, are listed in Table 1 and 2. For modeling 
purpose, the data-set was divided into training- and test-sets to insure external validation of derived models. 
The selection of test-set compounds was made through SYSTAT12 using the single linkage hierarchical 
cluster procedure involving the Euclidean distances of the agonist action, –logEC50 values. Nearly 25% of 
the total compounds were selected for this purpose from the generated cluster tree in such a way to keep 
them at a maximum possible distance from each other. In SYSTAT, by default, the normalized Euclidean 
distances are computed to join the objects of cluster. The normalized distances are root mean-squared 
distances. The single linkage uses distance between two closest members in clustering. It generates long 
clusters and provides scope to choose objects at intervals. Due to this reason, a single linkage clustering 
procedure was applied. 

Table 1: Observed and modeled S1P1 agonist actions of 3-substituted-5-(3,5-bis(trifluoromethyl) 
phenyl)-1,2,4-oxadiazoles [Fig. 1 (CTGA) for structures] 

–logEC50 (M) 
Calcd. Compd. X 

Obsd.a 

Eq. (1) Eq. (2) PLS 

1 
N
H

N

 
8.14 8.24 7.95 8.12 

2 
N

N

(CH2)2COOH  

8.01 7.59 7.69 7.91 

Cont… 
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–logEC50 (M) 

Calcd. Compd. X 
Obsd.a 

Eq. (1) Eq. (2) PLS 

3 
N

N

(CH2)3COOH  

8.31 7.95 8.28 8.24 

4 
N

N (CH2)4COOH

 
8.38 8.35 8.89 8.56 

5 
N

N

(CH2)2COOC2H5  

4.00 4.24 4.04 3.91 

6b 

N

N (CH2)4COOCH3

 
6.53 5.95 6.20 5.85 

7b N

N
H

N

 
6.39 6.67 7.13 6.98 

8 
N

OCH3  
6.00 6.16 6.64 6.28 

9 
N

N
H

N

 
7.62 7.37 7.09 7.33 

10 
N
H  

7.12 8.08 7.84 7.97 

11 
N
H

N

 
8.37 7.49 7.99 7.73 

12b 

N
H  

7.43 7.98 7.76 7.86 

13 
N

OCH2COOH  
7.27 7.69 7.23 7.55 

14 
N

N

N

(CH2)3COOH  

6.43 6.61 6.33 6.52 

15 
N

CO(CH2)2COOH  

7.39 7.51 7.61 7.67 

Cont… 
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–logEC50 (M) 

Calcd. Compd. X 
Obsd.a 

Eq. (1) Eq. (2) PLS 

16b 

N
H

N

(CH2)2COOH

 
8.92 8.87 8.36 8.85 

17 
N

CO(CH2)2COOH  

8.34 7.40 7.57 7.52 

18 
N

(CH2)2COOH  

8.21 8.01 8.32 8.04 

19b 
N

CO(CH2)3COOH  

8.18 7.62 7.90 7.70 

20 
N

COCH2COOH  

6.99 7.51 7.60 7.42 

21 N

O

COOH

H2N

 

8.79 9.16 8.30 8.59 

aAgonist activity; taken from ref. (11). bTest-set compound 

Table 2: Observed and modeled S1P1 agonist activity of 4-[5-(5-substituted-phenyl-[1,2,4] oxadiazol-3-
yl)-2,3-dihydroindol-1-yl]-4-oxobutyric acid derivatives [Fig. 1 (CTGB) for structures] 

–logEC50 (M) 

Calcd. Compd. R1 R2 
Obsd.a 

Eq.(3) Eq.(4) PLS 

22b Cl- 
 

9.09 8.73 8.59 8.74 

23 CF3- 
S  

8.89 9.23 9.19 9.24 

24 CN- 
O

 

7.74 7.92 7.91 7.69 

25 Cl- 
O

 
7.35 7.65 7.61 7.54 

Cont… 
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–logEC50 (M) 

Calcd. Compd. R1 R2 
Obsd.a 

Eq.(3) Eq.(4) PLS 

26b CH3O- CHF2O- 8.82 8.67 8.63 8.72 
27 CN- (CH3)2CHO- 8.96 8.83 8.84 8.64 
28 CF3O- CH3O- 9.00 8.80 8.79 8.71 
29 Br- (CH3)2CHO- 8.40 8.48 8.49 8.70 
30 CF3- C2H5- 8.57 8.36 8.50 8.43 
31b CF3O- Cl- 8.28 8.55 8.63 8.56 
32 CN- CH3O- 8.20 7.91 7.92 7.98 
33 CF3- CH3O- 7.96 7.67 7.72 7.91 
34 CH3- CH3O- 7.74 7.80 7.76 7.83 
35b Cl- CH3O- 7.96 7.55 7.58 7.88 
36c CH3SO2- C2H5- 7.42 9.83 9.34 9.66 
37 H CF3O- 7.17 7.32 7.25 7.31 

   aAgonist activity; taken from ref. (11), bTest-set compound. cOutlier compound 
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                     (CTGA)                                                          (CTGB) 

Fig. 1: [1,2,4]-Oxadiazoles having substituent variations at position-3 (CTGA) and                               
position-5 (CTGB) 

Molecular descriptors 

The structures of the compounds (Table 1 and 2) under study have been drawn in 2D ChemDraw13 
using the standard procedure. These structures were converted into 3D objects using the default conversion 
procedure implemented in the CS Chem3D Ultra. The generated 3D structures of the compounds were 
subjected to energy minimization in the MOPAC module, using the AM1 procedure for closed shell systems, 
implemented in the CS Chem3D Ultra. This will ensure a well defined conformer relationship across the 
compounds of the study. All these energy minimized structures of respective compounds have been ported 
to DRAGON software14 for computing the descriptors corresponding to 0D-, 1D-, and 2D-classes. Table 3 
provides the definition and scope of these descriptor classes in addressing the structural features which were 
employed in present QSAR work. The combinatorial protocol in multiple linear regression (CP-MLR) 
computational procedure15 has been used for present work in developing QSAR models. 
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Table 3: Descriptor classes used for the analysis of agonist activity of substituted-[1,2,4] oxadiazoles 

Descriptor class (acronyms) Definition and scope 

Constitutional (CONST) Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations. 

Topological (TOPO) 2D-descriptor from molecular graphs and independent 
conformations. 

Molecular walk counts  
(MWC) 

2D-descriptors representing self-returning walk counts of 
different lengths. 

Modified Burden eigenvalues 
(BCUT) 

2D-descriptors representing positive and negative eigenvalues of 
the adjacency matrix, weights the diagonal elements and atoms. 

Galvez topological charge indices 
(GLVZ) 

2D-descriptors representing the first 10 eigenvalues of corrected 
adjacency matrix. 

2D-autocorrelations  
(2DAUTO) 

Molecular descriptors calculated from the molecular graphs by 
summing the products of atom weights of the terminal atoms of 
all the paths of the considered path length (the lag). 

Functional groups  
(FUNC) 

Molecular descriptors based on the counting of the chemical 
functional groups. 

Atom-centred fragments  
(ACF) 

Molecular descriptors based on the counting of 120 atom-centred 
fragments, as defined by Ghose-Crippen. 

Empirical (EMP) 1D-descriptors represent the counts of non-single bonds, 
hydrophilic groups and ratio of the number of aromatic bonds 
and total bonds in an H-depleted molecule. 

Properties (PROP) 1D-descriptors representing molecular properties of a molecule. 

Model development 

The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR 
studies15. The procedural aspects and implementation of this procedure are discussed in our recent 
publications16-21. The developed computer program, based on CP-MLR procedure, is interfaced with four 
filters which make the variable selection process efficient and lead to a unique solution. Filter-1 seeds the 
variables by way of limiting inter-parameter correlations to predefined level (upper limit ≤ 0.79); filter-2 
controls the variables entry to a regression equation through t-values of coefficients (threshold value ≥ 2.0); 
filter-3 provides comparability of equations with different number of variables in terms of square root of 
adjusted multiple correlation coefficient of regression equation, r-bar; filter-4 estimates the consistency of 
the equation in terms of cross-validated Q2 with leave-one-out (LOO) cross-validation as default option 
(threshold value 0.3 ≤ Q2 ≤ 1.0). In order to collect the descriptors with higher information content and 
explanatory power, the threshold of filter-3 was successively incremented with increasing number of 
descriptors (per equation) by considering the r-bar value of the preceding optimum model as the new 
threshold for next generation. Furthermore, in order to discover any chance correlations associated with the 
models recognized in CP-MLR, each cross-validated model has been put to a randomization test22,23 by 
repeated randomization of the activity to ascertain the chance correlations, if any, associated with them. For 
this, every model has been subjected to 100 simulation runs with scrambled activity. The scrambled activity 
models with regression statistics better than or equal to that of the original activity model have been counted, 
to express the percent chance correlation of the model under scrutiny. 
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Applicability domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model 
is valid only within its training domain and new compounds must be assessed as belonging to the domain 
before the model is applied. The applicability domain is evaluated by the leverage values for each 
compound24,25. The Williams plot (the plot of standardized residuals versus leverage values, h) can then be 
used for an immediate and simple graphical detection of both the response outliers (Y-outliers) and 
structurally influential chemicals (X-outliers) in the model. In this plot, the applicability domain is 
established inside a squared area within ± β × s.d. and a leverage threshold h*. The threshold h* is generally 
fixed at 3(k + 1)/n (n is the number of training-set compounds and k is the number of model parameters) 
whereas β = 2 to 3. Prediction must be considered unreliable for compounds with a high leverage value (h > 
h*). On the other hand, when the leverage value of a compound is lower than the threshold value, the 
probability of accordance between predicted and observed values is as high as that for the training-set 
compounds. 

RESULTS AND DISCUSSION 

In the initial attempt, all compounds (Table 1 and 2) have been considered together to quantify their 
observed agonist activities as a function of molecular descriptors. However, no significant relationship was 
obtained, suggesting that all compounds collectively may not follow similar trend and require to review their  
functionality variations at 3- and 5-positions of 1,2,4-oxadiazole scaffold. When position-3 was varied, 
position-5 was fixed to 3,5-bis(trifluoromethyl)phenyl moiety (CTGA) and when position-5 was varied, 
position-3 was fixed to 1-(4-hydroxy-4-oxo-butanoyl)indolin-5-yl moiety (CTGB). In either CTGA or 
CTGB the occurrence of benzimidazole or indoline rings with or without an acid side chain, at 3-position of 
1,2,4-oxadiazole scaffold, are invariably accommodated in the S1P1 receptor pocket11. Therefore the mode 
of action of 3-substituents in these categories may not be differentiated. On the other hand, the influence of 
substituents in 5-phenyl ring of 1,2,4-oxadiazole scaffold may be  discriminated easily in the two categories. 
In CTGA the 5-phenyl ring has fixed meta-substitutents (3-CF3 and 5-CF3) while in CTGB the same is 
varied with different meta- and para-substituents. Obviously, the behavior of para-substituents differs 
significantly from that of meta-substituents which may possibly be reflected during interaction with receptor 
site(s).  

A total number of 452 and 448 descriptors, belonging to 0D-, 1D- and 2D- classes, were computed, 
respectively, for the compounds of CTGA and CTGB utilizing DRAGON software. In either category, the 
data-set was further divided into training-set for model development and test-set for external validation of 
developed models. The selection of compounds for test-set was made through SYSTAT using the single 
linkage hierarchical cluster procedure involving the Euclidean distances of the –logEC50 values. Five 
compounds (S. Nos. 6, 7, 12, 16 and 19; Table 1) from CTGA and four compounds (S. Nos. 22, 26, 31 and 
35; Table 2) from CTGB were selected from the generated cluster trees in such a way to keep them at a 
maximum possible distance from each other. The computed descriptors were subjected to CP-MLR to 
develop models which may explain their agonist actions. The internal consistency, for each generated 
models, was achieved through LOO and L5O procedures while external validation was ascertained through 
r2

Test. Three tri-variant models for CTGA and twenty bi-variant models for CTGB remained statistically 
significant. However, two highest significant models, in increasing level of significance, for each of these 
categories have been given through Eqs. (1)-(4). Thus for compounds in CTGA: 

–logEC50 = 3.679 + 2.241 (0.612) MATS 4 m + 3.258 (0.525) MATS1v + 2.471 (1.098) MATS 5 p 

n = 16, r = 0.911, s = 0.556, F (3, 12) = 19.533, Q2
LOO = 0.687, Q2

L5O =  0.778, r2
Test = 0.776 ...(1) 



J. Curr. Chem. Pharm. Sc.: 3(1), 2013 71

–log EC50 = 5.306 + 2.911 (0.550) MATS 4 m + 3.427 (1.023) MATS 5 p –1.996 (0.283) O-060 

n = 16, r = 0.928, s = 0.503, F (3, 12) = 24.758, Q2
LOO = 0.763, Q2

L5O = 0.737, r2
Test = 0.750 ...(2) 

and for compounds in CTGB: 

–log EC50 = 7.318 + 0.934 (0.247) BELe 2 + 1.456 (0.225) MATS 7 p 

n = 11, r = 0.933, s = 0.259, F(2,8) = 26.748, Q2
LOO = 0.676, Q2

L5O = 0.755, r2
Test = 0.699 ...(3) 

–log EC50 = 7.253 + 1.542 (0.193) MATS 7 p + 0.897 (0.188) C-025 

n = 11, r = 0.952, s = 0.220, F(2, 8) = 38.493, Q2
LOO = 0.795, Q2

L5O = 0.789, r2
Test = 0.571 ...(4) 

In above equations, n, r, s and F represent, respectively, the number of compounds, correlation 
coefficient, standard deviation and F-ratio between the variances of observed to calculated activity values. In 
fact three models, obtained for CTGA, have shared 6 descriptors and twenty models, obtained for CTGB 
have shared 14 descriptors. The brief description, average regression coefficients and the total incidence of 
these participated descriptors are given in Table 4. In all emerged models, the F-values remained significant 
at 99% level [F3,12(0.01) = 5.953 and F2,8(0.01) = 8.649] and  the standard errors of regression coefficients 
(data within the parentheses) were significant at more than 95% level. For derivation of models from CTGB, 
one compound 36 (Table 2) was eliminated from the data-set due to it indifferent behavior. In fact, this was 
the lone compound which contains a meta-methanesulfonyl substituent in phenyl ring attached to 5-position 
of [1,2,4] oxadiazole scaffold. Possibly, the bigger size of this substiuent may not allow proper molecular 
binding with receptor site. Eqs. (1)-(4) are able to explain more than 85% of the variance in observed agonist 
actions of the compounds. The indices Q2

LOO and Q2
L5O (> 0.5) have accounted for internal robustness of the 

developed models while the index r2
Test greater than 0.5 specified that the selected test-sets are accountable 

for external validation of these models. The signs of the regression coefficients have indicated the direction 
of influence of explanatory variables in a given model; the positive regression coefficient associated to a 
descriptor will augment the activity profile of a compound while the negative coefficient will cause 
detrimental effect to it. 

Table 4: Identified descriptorsa along with their physical meaning, average regression coefficient and 
incidenceb, in modeling the S1P1 agonist activity of 1,2,4-oxadiazoles 

Average regression 
coefficient (incidence) S. 

No. Descriptor Class Physical meaning 
CTGA CTGB 

1 PW3 TOPO Path/walk 3-Randic shape index. -1.045(1)  

2 PW4 TOPO Path/walk 4-Randic shape index.  46.620 (1) 

3 VEA1 TOPO Eigenvector coefficient sum from adjacency 
matrix.  0.921 (1) 

4 VRA1 TOPO Randic-type eigenvector-based index from 
adjacency matrix.  -0.003 (2) 

Cont… 
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Average regression 
coefficient (incidence) S. 

No. 
Descriptor Class Physical meaning 

CTGA CTGB 

5 VRA2 TOPO 
Average Randic-type eigenvector-based 
index from adjacency matrix. 

 -0.128 (2) 

6 BELm1 BCUT 
Lowest eigenvalue no. 1 of Burden matrix/ 
weighted by atomic masses. 

 25.892 (1) 

7 BELm2 BCUT 
Lowest eigenvalue no. 2 of Burden matrix/ 
weighted by atomic masses. 

 18.646 (4) 

8 BELe2 BCUT 
Lowest eigenvalue no. 2 of Burden matrix/ 
weighted by atomic Sanderson 
electronegativities. 

 21.367 (3) 

9 BELp4 BCUT 
Lowest eigenvalue no. 4 of Burden matrix/ 
weighted by atomic polarizabilities.  -3.719 (1) 

10 MATS4m 2DAUTO 
Moran autocorrelation – lag 4/ weighted by 
atomic masses. 2.576 (2)  

11 MATS1v 2DAUTO 
Moran autocorrelation – lag 1/ weighted by 
atomic van der Waals volumes. 

3.509 (2)  

12 MATS7v 2DAUTO 
Moran autocorrelation – lag 7/ weighted by 
atomic van der Waals volumes. 

-2.563 (1) 7.556 (4) 

13 MATS5p 2DAUTO 
Moran autocorrelation – lag 5/ weighted by 
atomic polarizabilities. 

2.949 (2)  

14 MATS7p 2DAUTO 
Moran autocorrelation – lag 7/ weighted by 
atomic polarizabilities. 

 7.291 (6) 

15 GATS7v 2DAUTO 
Geary autocorrelation – lag 7/ weighted by 
atomic van der Waals volumes. 

 -7.082 (7) 

16 GATS7p 2DAUTO 
Geary autocorrelation – lag 7/ weighted by 
atomic polarizabilities.  -5.427 (3) 

17 C-025 ACF Corresponds to: R--CR--R.  0.399 (4) 

18 C-026 ACF Corresponds to: R--CX--R.  -0.327 (1) 

19 O-060 ACF 
Corresponds to: Al-O-Ar/ Ar-O-Ar/ R..O..R 
/ R-O-C=X. 

-1.996 (1)  

aThe descriptors have been identified from the models, emerged from CP-MLR protocol with a training-set 
of 16 and 11 compounds for S1P1 agonist activity the compounds in CTGA and CTGB respectively.  
bThe average regression coefficient of the descriptor corresponding to all models and the total number of its 
incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in 
the models 
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In above equations, the descriptors MATS4m, MATS1v, MATS5p and MATS7p represent the 
Moran autocorrelations in which weighting components m, p and v represent, respectively, atomic masses, 
atomic polarizabilities and atomic van der Waals volumes and penultimate number represents the lag (path). 
These spatial autocorrelation descriptors are calculated on a H-depleted molecular graph. The descriptor, 
BELe2 represents the lowest eigenvalue no. 2 of Burden matrix/ weighted by atomic Sanderson 
electronegativities. It is calculated for a H-included molecular graph from the Burden matrix. Lastly, the 
descriptors, C-025 and O-060 correspond to the functionalities R--CR--R and Al-O-Ar/Ar-O-Ar/R-O-R/R-
O-C=X respectively. 

From Eqs. (1) and (2), it appeared that the higher values of the descriptors, MATS1v, MATS4m and 
MATS5p are conducive in improving the agonist action of a compound from CTGA while the functionality 
such as Al-O-Ar or Ar-O-Ar or R-O-R/R-O-C=X, imparting detrimental effect to it,  is undesirable.  Thus, 
the lags 1, 4 and 5 of a molecule weighted, respectively, by atomic van der Waals volumes, atomic masses 
and atomic polarizabilities are the dominating factors during interaction with receptor. Both these equations 
have been used to calculate the –logEC50 values of the compounds. These calculated values were found in 
close agreement with the observed ones (Table 1). A graphical display, showing the plot of observed versus 
calculated –logEC50s, is included in Fig. 2. The systematic variations, between the two, have been observed 
for the model Eqs. (1) and (2).  

The descriptor MATS7p, participated in Eqs. (3) and (4), has revealed positive influence on agonist 
action of compounds from CTGB. Similarly, the descriptors, BELe2 and C-025 have also shown 
incremental effect on the activity. The higher values of the descriptors BELe2 and MATS7p (Eq. 3) or the 
descriptors MATS7p and C-025 (Eq. 4) are helpful in augmenting the activity of a compound. Thus the 
electronic and polarization effects or polarization effect in addition to structural fragment; R--CR--R 
appeared as dominating factors during interaction with receptor sites. The calculated –logEC50 values, using 
Eqs. (3) and (4), listed in Table 2 remained in parity with the observed ones. The plot, revealing the 
goodness of fit and the systematic behavior, between observed and calculated –logEC50s from both these 
models are given in Fig. 2. 

Further, the PLS analysis26-28 have also been performed using 6 and 14 identified descriptors for 
compounds of CTGA and CTGB respectively and the results are summarized in Table 5. In the study, the 
descriptors were autoscaled (zero mean and unit standard deviation) to provide each one of them equal 
weightage. In the PLS cross-validation, two-components remained optimum for these descriptors and they 
have explained 88.4% and 87.0% of variances in the observed agonist activities of the compounds from 
CTGA and CTGB respectively. The PLS equations of optimum two-components and MLR-like PLS 
coefficients of identified descriptors are given in Table 5. The calculated activity values of training- and test-
set compounds remained in close agreement to that of the observed ones and are listed in Table 1 and 2. For 
comparison, the plot between observed and calculated activities (through PLS analyses) for the training- and 
test-set compounds is given in Fig. 2. Fig. 3 shows a plot of the fraction contribution of normalized 
regression coefficients of these descriptors to the activity (Table 5). Different orders, indicating the level of 
significance of 6 and 14 participated descriptors for compounds of CTGA and CTGB respectively, are 
included in Table 5. For a given descriptor, lower is the order higher would be its significance in addressing 
the biological activity. The descriptors having positive contribution will augment the activity and their 
higher values are desirable to further improve it. On the other hand, the descriptors having negative 
contribution will diminish the activity. The lower or more negative values of such descriptors may, therefore, 
enhance the activity of a compound.  
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Table 5: PLS and MLR-like PLS models from the descriptors of three and two parameter CP-MLR 
models for S1P1 agonist actions of compounds from CTGA and CTGB  

A: PLS equation 

PLS coefficient (s.e.)a 
PLS components 

CTGA CTGB 

Component-1 0.790 (0.082) 0.266 (0.037) 

Component-2 -0.309 (0.102) -0.056 (0.034) 

Constant 7.461 8.180 

 

B: MLR-like PLS equation 

CTGA CTGB 
S. 

No. Descriptor MLR-like 
coefficient (f.c.)b Order 

S. 
No. Descriptor MLR-like 

coefficient (f.c.)b Order 

1 PW3 -0.485 (-0.064) 6 1 PW4 0.172 (0.056) 8 
2 MATS4m 1.643 (0.182) 3 2 VEA1 0.196 (0.064) 6 
3 MATS1v 1.975 (0.254) 1 3 VRA1 -0.158 (-0.061) 7 
4 MATS7v -1.338 (-0.138) 5 4 VRA2 -0.195 (-0.080) 5 
5 MATS5p 2.270 (0.141) 4 5 BELm1 0.085 (0.032) 11 
6 O-060 -1.003 (-0.220) 2 6 BELm2 0.039 (0.014) 13 
 Constant 6.013  7 BELe2 0.136 (0.050) 9 
    8 BELp4 -0.036 (-0.015) 12 

 9 MATS7v 0.311 (0.134) 4 
 10 MATS7p 0.388 (0.157) 1 
 11 GATS7v -0.366 (-0.149) 2 
 12 GATS7p -0.334 (-0.136) 3 
 13 C-025 0.110 (0.046) 10 
 14 C-026 -0.017 (-0.007) 14 
  Constant 8.208  

C: PLS regression statistics 

Value 
Symbol 

CTGA CTGB 

n 16 11 

r 0.942 0.933 

s 0.434 0.259 

F 49.347 26.895 

Q2
LOO 0.838 0.643 

Q2
L5O 0.843 0.598 

r2
Test 0.736 0.833 

 

aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of 
descriptors for their original values; f.c. is fraction contribution of regression coefficient, computed from the 
normalized regression coefficients obtained from the autoscaled (zero mean and unit s.d.) data. 
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Fig. 2: Plot of observed versus caculated agonist activity, –logEC50, values of training-set and test-set 
compounds from CTGA and CTGB 
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Fig. 3: Plot between fraction contribution of MLR-like PLS coefficients (normalized) and 6 and 14 
identified descriptors (Table 5) associated with agonist actions of the compounds from                         

CTGA and CTGB 

The applicability domain (AD) has been analyzed for the models based on whole data-set relating to 
the activity profiles of the compounds. It is characterized by the Williams plot of standardized residuals 
versus leverage (hi) values. For this purpose the participated descriptors in the most significant Eqs. (1)-(4) 
have been considered to derive corresponding models based on whole data sets which are given in Eqs. (5)-
(8). The standardized residuals and leverage values, calculated in conjunction with them, are further used to 
ascertain their ADs. For compounds in CTGA: 

–logEC50 = 3.703 + 2.009 (0.534) MATS4m + 3.243 (0.405) MATS1v + 2.957 (0.937) MATS5p 

n = 21, r = 0.910, s = 0.519, F(3,17) = 27.168, Q2
LOO = 0.704, Q2

L5O = 0.550 ...(5) 

–log EC50 = 5.415 + 2.699 (0.508) MATS4m + 3.649 (0.912) MATS5p –2.112 (0.246) O-060 
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n = 21, r = 0.920, s = 0.490, F(3,17) = 31.082, Q2
LOO = 0.767, Q2

L5O = 0.661 ...(6) 

and for compounds in CTGB: 

–logEC50 = 7.309 + 1.013 (0.236) BELe2 + 1.405 (0.201) MATS7p 

n = 15, r = 0.912, s = 0.273, F(2,12) = 29.473 ...(7) 

–log EC50 = 7.326 + 1.489 (0.207) MATS7p + 0.890 (0.210) C-025 

n = 15, r = 0.910, s = 0.275, F(2,12) = 29.026  …(8) 

The limits of normal values for the standardized residuals (response or Y-outliers) were set as ±2.5 × 
s.d. while leverage threshold as h*. The graphical representations for these models are given in Fig. 4. From 
this figure, it is appeared that compound 36, as expected, remains the obvious outlier from CTGB. The 
standardized residuals of this compound, calculated using the descriptors of Eqs. (3) and (4), have been 
found much deviated from the normal limits (±2.5 × s.d.). Except this congener, all remaining compounds 
(training-set and test-set), from CTGA and CTGB, remained within the squares, indicated that ADs are fully 
justified and identified models in Eqs. (1)-(4) have been evaluated correctly. Also, the derived models match 
the high quality parameters with good fitting power and capability of assessing external data. 

      

      

Fig. 4: Williams plot for whole data-set for agonist actions of compounds from CTGA and CTGB, 
listed in Table 1 and 2 respectively (h* values, in that order, are 0.571 and 0.563 and                          

residual limits are ± 2.0 × s.d.) 
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CONCLUSIONS 

The agonist activity of substituted-[1,2,4]oxadiazoles has been quantitatively analyzed in terms of 
molecular descriptors. The mode of interaction of 3-substuted-[1,2,4]oxadiazoles (CTGA) appeared 
significantly different from that of 5-(substituted phenyl)-[1,2,4]oxadiazoles (CTGB), therefore, compounds 
in these two categories have been considered separately to derive statistical models which were able to 
explain their agonist actions. For compounds in CTGA, tri-variant models have been identified to address 
the biological actions of the compounds. From highest significant models, it appeared that the higher values 
of the descriptors, MATS1v, MATS4m and MATS5p are conducive in improving the agonist action of a 
compound while the functionality such as Al-O-Ar or Ar-O-Ar or R-O-R/R-O-C=X, imparting detrimental 
effect to it,  is undesirable.  Thus, the Moran autocorrelations (MATS) of lags 1, 4 and 5 of a molecule 
weighted, respectively, by atomic van der Waals volumes (v), atomic masses (m) and atomic polarizabilities 
(p) remain the dominating factors during interaction with receptor. For compounds in CTGB, bi-variant 
models remained significant to describe their activity profiles. The higher values of the descriptors BELe2 
(the lowest eigenvalue no. 2 of Burden matrix/ weighted by atomic Sanderson electronegativities) and 
MATS7p (Moran autocorrelation – lag 7/ weighted by atomic polarizabilities) or the descriptors MATS7p 
and C-025 (the fragment R--CR--R) are helpful in augmenting the activity of a compound. Thus the 
electronic and polarization effects or polarization effect in addition to structural fragment, R--CR--R 
appeared to be governing features during interaction. PLS analysis has further confirmed the dominance of 
the CP‐MLR identified descriptors. The guidelines, based on the statistically validated models, may 
facilitate in exploring more potential analogues of the series. Applicability domain analysis revealed that the 
suggested models have acceptable predictability. Except one obvious outlier compound from CTGB, all 
remaining compounds were within the applicability domain of the proposed models and were evaluated 
correctly. 
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