September 2009

Organic CHEMISTRY

Trade Science Inc.

An Indian Journal — FUII Paper

Quantitative structure-activity relationship of some substituted phenothiazine as anti-inflammatory agents

Ashok S.Narute*, Anapartima G.Nikalje Y. B. Chvan college of Pharmacy, Dr. Rafique Zakaria Campus, Aurangabad, (MH), (INDIA) E-mail: ashoknarute@rediffmail.com Received: 8th June, 2009; Accepted: 18th June, 2009

ABSTRACT

The invention of new anti-inflammatory agents peaks the first phase of an existing and fast paced effort to exploit a novel, target for nonsteroidal antiinflammatory drugs (NSAIDs). A series of molecules has been reported as anti-inflammatory agents belonging to the class of phenothiazine nucleus. Various physicochemical and steric parameters were calculated. Quantitative structure-activity relationship models were generated employing sequential multiple regression method using VALSTAT. Statistically significant models with R-values 0.949 and 0.946 were obtained. Models were validated using leave one out and bootstrapping methods. The result shows that Boiling point, Stretch energy, Connolly molecular area and Partition coefficient are contributing to biological activity. Among these, Connolly molecular area and partition coefficient plays an important role as positive contribution is seen in the models. The obtained and validated models bring important structural insight to aid the design of novel anti-inflammatory activity prior to their synthesis. © 2009 Trade Science Inc. - INDIA

INTRODUCTION

The anti-inflammatory agents represent an extremely interesting category of drugs as evident from the active research going on in numerous laboratories all over the world. There is continuous demand for new therapeutic agents for their therapeutic use, with high margin of safety and freedom for normally associated gastrointestinal side effects, notably dyspepsia, complications of peptic ulcers and renal toxicity of known anti-inflammatory drugs^[1,2] it was thought to study QSAR analysis of some anti-inflammatory cyclic Phenothiazine derivatives reported by Saxena et al^[3]. The above re-

KEYWORDS

Quantitative Structure-Activity Relationship; Phenothiazine; Anti-inflammatory Agents.

ported series of 20 compounds was subjected to quantitative structure-activity relationships (QSAR) analyses. As a part of our rational drug discovery programme on novel NSAIDs, the theoretical study is aimed for determining the quantitative relationship between various substitutions on phenothiazines and their anti-inflammatory activity.[4-6]

EXPERIMENTAL

The activity data have been given as IC50 values, where IC50 refers to the experimentally determined molar concentration of the phenothiazine required to

Full Paper

inhibit carrageenan induced rat's paw oedema by 50%. The biological activity values [IC50 (μ M)] reported in the literature were converted to molar units, and further to -log scale, and subsequently used as the response variable for QSAR analysis. Molecular modeling and quantum mechanical calculations were performed using CS Chem office software Version 6.0 (Cambridge Software)^[7] running on P-IV processor.

The series of 20 compounds was generated by combination of four subsets of compounds of different nucleus (Figure 1) subset 1 Schiff's bases (compound (1) to (5)), subset 2-thiazolidinones (compound (6) to (10)), subset 3 ?²-triazolines (compound (11) to (15)) and subset 4-formazons (compound (16) to (20)) of 2-chlorophenothiazines subjected to QSAR analysis.

Compd. No.

2

All the compounds (1-20) (TABLE 1) were sketched using CS Chem Draw Ultra module of CS Chem office. The sketched structures were imported to chem. 3D module in order to create its 3D model. Energy calculations were done using the Allinger's MM2 force field. Every structure was subjected to energy minimization process with root mean square gradient (RMS) 0.100 Kcal/molAº. After the minimization process is over molecular dynamics uses Newtonian mechanics to stimulate motion of atoms; adding or subtracting kinetic energy, as the models temperature increases or decreases. Each and every compound reached to its most stable conformer and further, geometry optimization was done using semi-empirical AM1 (Austin model) Hamiltonian method, namely MOPAC (Version 6.0) module with the RMS value 0.001 Kcal / mol Aº.

The optimized conformers were used for calculating physicochemical parameters by standard procedures given in QSAR plus modulus of CS Chem 3D. The

An Indian Journal

Organic CHEMIS

3	2,6-Cl ₂	0.18	6.73
4	2-CH ₃	0.09	7.01
5	$4-CH_3$	0.08	7.05
6	2-C1	0.28	6.53
7	4-F	0.38	6.41
8	$2,6-Cl_2$	0.34	6.46
9	2-CH ₃	0.27	6.56
10	$4-CH_3$	0.32	6.49
11	2-C1	0.19	6.70
12	4-F	0.25	6.59
13	$2,6-Cl_2$	0.22	6.64
14	$2-CH_3$	0.19	6.71
15	$4-CH_3$	0.16	6.77
16	2-C1	0.14	6.84
17	4-F	0.17	6.75
18	$2,6-Cl_2$	0.15	6.81
19	$2-CH_3$	0.12	6.91
20	4-CH ₃	0.13	6.85

 TABLE 1 : Substituents and anti-inflammatory data for phenothiazines

R

2-C1

4-F

IC 50

0.13

0.14

pIC₅₀

6.87

6.84

descriptors (TABLE 2) were calculated for QSAR^[8,9] study (value of only those descriptors occurring in diffe

TABLE 3 : Descriptors contributing to the anti-inflammatory activity of phenothiazines

ferent	equations are given in TABLE 3.	ourring in an	Compo	d. N	o. BP	СМА	SE	PC
			1		817.612	358.791	11.898	4.700
TA	ABLE 2 : Descriptors calculated for Q	SAR study	2	,	796.242	349.819	12.169	4.730
Sr. No.	Descriptor	Туре	3		836.305	371.536	12.170	4.853
1	Heat of Formation (HF)	Thermodynamic	1		810 515	353 8/3	7 8121	1 674
2	Boiling Point (BP)	Thermodynamic	4	•	810.515	353.045	7.0424	4.074
3	Critical Pressure (CP)	Thermodynamic	5		810.515	358.528	8.0754	4.974
4	Critical Valuma (CV)	Thermodynamic	6		939.901	413.392	14.185	6.442
3 7	Henry's Law Constant (HLC)	Thermodynamic	7		918.533	395.947	14.426	5.872
8	Ideal Gas Thermal Canacity (IGTC)	Thermodynamic	8		058 505	/10 130	1/ 788	7 155
0	Log P	Thermodynamic	8	•	938.393	419.139	14.700	7.155
10	Melting Point (MP)	Thermodynamic	9		932.805	399.799	10.346	6.178
10	Molar Refractivity (MR)	Thermodynamic	10)	932.805	404.014	9.422	6.228
12	Standard Gibbs Free Energy (SGFE)	Thermodynamic	11	1	869.679	384.189	12.117	5.906
13	Connolly Accessible Area (CAA)	Steric	12	2	848 311	378 673	17 167	5 336
14	Connolly Molecular Area (CMA)	Steric	12	- -	000 272	202 112	15 777	6 (10
15	Connolly Solvent-Excluded Volume (CSEV)	Steric	13	5	888.373	393.112	15.///	0.019
16	Ovality (OVA)	Steric	14	4	862.583	387.447	15.732	5.642
17	Principal Moment of Inertia – X (PMI–X)	Steric	15	5	862.583	393.144	16.675	5.692
18	Principal Moment of Inertia – Y (PMI–Y)	Steric	16	5	940.207	448.017	12.518	8.437
19	Principal Moment of Inertia – Z (PMI–Z)	Steric	17	7	019 920	440.027	17 407	7 967
20	Dipole Moment (D)	Electronic	17	/	918.839	440.957	17.497	/.00/
21	Dipole Moment –X Axis (DX)	Electronic	18	8	958.902	458.297	15.398	9.150
22	Dipole Moment –Y Axis (DY)	Electronic	19	9	933.112	457.467	12.884	8.223
23	Dipole Moment –Y Axis (DZ)	Electronic	20)	933 112	437 803	12 701	8 2 2 3
24	Electronic Energy (EE)	Electronic		<i>.</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	137.005	12.701	
25	HOMO Energy (HOMO)	Electronic	n -	N	umber of same	le in regre	ssion	
26	LUMO Energy (LUMO)	Electronic	п - D			finite and	551011	
27	Repulsion Energy (RE)	Thermodynamia	K -	U	orrelation coef	ncient		
20	Charge Charge Energy (CCE)	Thermodynamic	\mathbf{R}^2 -	Sc	quared correlati	ion coeffici	ient (coeff	ficient o
30	Charge–Dipole Energy (CDE)	Thermodynamic		de	etermination)			
31	Dipole–Dipole Energy (DDE)	Thermodynamic	SD -	St	andard deviati	on		
32	Non–1, 4 VDW Energy (E _v)	Thermodynamic	t test	E	or statistical si	anificanc	a and cor	rolation
33	Stretch Energy (SE)	Thermodynamic	t-test -	1.0		ignificane		relation
34	Stretch-Bend Energy (SBE)	Thermodynamic		m	atrix to show n	nutual corr	elation an	nong th
35	Torsion Energy (E _t)	Thermodynamic		pa	arameters.			
36	Total Energy (E)	Thermodynamic	F-test -	R	atio between t	he describ	ed parts a	nd non
37	Van der Waals e 1,4 Energy (VDWE)	Thermodynamic	1 0000	d	accribed port o	f the V ver	ionco	
38	VDW 1,4 Energy (VDWE)	Thermodynamic	2	uc	escribed part o			
39	Partition coefficient	Thermodynamic	r_{BS}^2 -	B	ootstrapped st efficient	rapped sq	uared cor	relation
Al	l the calculated descriptors were	considered as	q ² -	So	quared cross-c	orrelation	coefficier	nt

independent variables and biological activity as dependent variable. The correlation was obtained by stepwise multiple regression analysis employing VALSTAT^[10] software.

To generate QSAR equations, stepwise multiple regression analysis^[11] method was used. The QSAR generated models were cross-validated using the leave one out and bootstrapping method. The best equation was judged by considering the following statistical measures.

	14	862.583	387.447	15.732	5.642
	15	862.583	393.144	16.675	5.692
	16	940.207	448.017	12.518	8.437
	17	918.839	440.937	17.497	7.867
	18	958.902	458.297	15.398	9.150
	19	933.112	457.467	12.884	8.223
	20	933.112	437.803	12.701	8.223
n	-	Number of samp	ole in regres	ssion	
R	-	Correlation coef	ficient		
\mathbb{R}^2	-	Squared correlat	ion coefficie	ent (coeffi	icient of
		determination)			
SD	-	Standard deviati	on		
t-test	-	For statistical st	ignificance	and corr	elation
		matrix to show n	nutual corre	lation am	ong the
		parameters.			
F-test	-	Ratio between t	he describe	ed parts a	nd non-
		described part o	f the Y vari	ance	
r_{BS}^2	-	Bootstrapped st	rapped squ	ared cori	relation
		coefficient			
q^2	-	Squared cross-c	orrelation c	oefficien	t
S_{DEP}	-	Standard deviat	ion of error	of predic	tion
S _{PRESS}	-	Standard deviat	ion of sum	of square	e of dif-
		ference betwee	n predicte	d and ob	oserved
		values			

RESULTS AND DISCUSSION

All the calculated descriptors and $\log IC_{50}$ value of the 20 compounds were subjected to stepwise multiple regression analysis and several models were generated.

Organic CHEMISTRY

An Indian Journal

Full Paper

Among these models obtained, model-I and model-II were considered based on the statistical criterion: correlation coefficient > 0.8 and chance correlation < 0.001.

MODEL-I

 $\begin{aligned} pIC_{_{50}} &= 10.539 \ (\pm 0.733) - 0.005(\pm 0.001)BP - \\ 0.025(\pm 0.011)SE + 0.185(\pm 0.041) \ PC \\ n &= 20, \ R &= \ 0.946, \ R^2 &= \ 0.894, \ F &= 45.456, \\ variance &= 0.004, \ SD &= 0.063. \end{aligned}$

MODEL-II

 $pIC_{50} = 9.035(\pm 0.524) - 0.006(\pm 0.001)BP + 0.009$ $(\pm 0.001)CMA - 0.030(\pm 0.0115) SE$ n=20, R= 0.949, R² = 0.901, F=48.538,variance=0.003, SD = 0.061.

Model -I shows good correlation (R=0.946) between descriptors (BP, SE, PC) and biological activity. The thermodynamic descriptor boiling point (BP) and stretch energy (SE) shows negative contribution while partition coefficient (PC) shows positive contribution with anti-inflammatory activity. BP is the temperature at which the kinetic energy of molecule is sufficient to overcome attractive forces. Negative contribution of BP indicates decrease in intermolecular attractive forces and is conducive for activity. Stretch energy, a thermodynamic parameter, deals with the stretching or the conformational flexibility of the molecule. The descriptor in first model bears a negative coefficient, indicating, substituents that decrease the flexibility of phenothiazines and will enhance the anti-inflammatory activity. Partition coefficient calculated using atom based approach and represents the hydrophobicity of the molecules^[12]. Partition coefficient is positively correlated with the biological activity. This property assumes significance in the present case because of the fact that the molecules under study contain lipophilic groups. Thus, model-I suggests that partition coefficient is of significance having high value of t-test indicating statistical significance of calculated regression coefficient.

To confirm these results, the value of pIC_{50} was estimated using leave one-out and correlated with observed value pIC_{50} . The value of bootstrapping r², chance and q² in randomized biological activity indicates the statistical significance of the model as given below.

 $r_{BS}^2 = 0.901$, chance = <0.001, $q^2 = 0.836$, S_{PRESS}

An Indian Journal

Organic CHEMISTRY

 $= 0.078, S_{\text{DFP}} = 0.070.$

The predicted activity data of model-I is shown in TABLE 4. A plot of observed activity versus predicted activity of the compounds is shown in Figure 2.

TABL	E 4 : Predic	ted activity data fo	r model-I
Compd.	Log	Calculated	Predicted
No.	BA	Activity	Activity
1	6.87	6.831	6.825
2	6.84	6.875	6.884
3	6.73	6.822	6.832
4	7.01	6.953	6.931
5	7.05	6.989	6.965
6	6.53	6.495	6.489
7	6.41	6.463	6.475
8	6.46	6.412	6.398
9	6.56	6.532	6.523
10	6.49	6.598	6.639
11	6.72	6.730	6.732
12	6.59	6.661	6.683
13	6.64	6.584	6.576
14	6.71	6.695	6.692
15	6.77	6.718	6.707
16	6.84	6.856	6.860
17	6.75	6.774	6.782
18	6.81	6.745	6.728
19	6.91	6.974	7.009
20	6.85	6.802	6.794

Model-II shows good correlation (r=0.949) between descriptors (BP, CMA, SE) and biological activity. BP, SE negatively contributed to the biological activity. BP and SE are thermodynamic parameters. It plays an important role in governing molecular reactivity and properties. The model suggests that BP is of significance indicating that lowering the BP will favor the activity. Stretch energy, a thermodynamic parameter, deals with the stretching or the conformational flexibility of the molecule. The descriptor in the model bears a negative coefficient, indicating, substituents that decrease the flexibility of phenothiazines and will enhance the anti-inflammatory activity. Connolly's solvent molecular area (CMA), a steric descriptor, represents the surface area that is in contact with the solvent. The descriptor bears positive coefficient in the model, suggesting decrease in the bulkiness of the substituents and molecular solvent molecular surface area is not conducive to the activity.

To confirm these results, the value of pIC_{50} was estimated using leave one-out and correlated with observed value pIC_{50} . The value of bootstrapping r², chance and q² in randomized biological activity indicates the statistical significance of the model as follows.

 $r_{BS}^{2} = 0.911$, chance = <0.001, $q^{2} = 0.835$, $S_{PRESS} = 0.079$, $S_{DEP} = 0.070$.

The predicted activity data of model-II is shown in TABLE 5. A plot of observed activity versus predicted activity of the compounds is shown in Figure 3.

Compd.	Log	Calculated	Predicted
No.	BA	Activity	Activity
1	6.87	6.824	6.817
2	6.84	6.935	6.961
3	6.73	6.747	6.750
4	7.01	6.959	6.939
5	7.05	7.009	6.992
6	6.53	6.449	6.429
7	6.41	6.449	6.459
8	6.46	6.468	6.470
9	6.56	6.534	6.525
10	6.49	6.567	6.599
11	6.70	6.770	6.774
12	6.59	6.648	6.667
13	6.64	6.712	6.720
14	6.71	6.666	6.660
15	6.77	6.652	6.626
16	6.84	6.860	6.866
17	6.75	6.740	6.738
18	6.81	6.822	6.827
19	6.91	6.848	6.834
20	6.85	6.853	6.853

TABLE 5 : Predicted activity data for model-II

Figure 3 : Graph between observed activity and predicted activity of model-II.

Comparison of model-I and model-II reveals that model-II shows better correlation (r=0.949) between descriptors and biological activity than model-I (r=0.946). The bootstrapping r^2 (r^2_{BS} = 0.911) reflects the significance of model-II when compared to model-I. But the correlation matrix for model-I and model-II in TABLE 6 and TABLE 7, respectively, reveals that descriptors in the model-II are not significantly intercorelated indicating that their contribution is independent to the biological activity. By evaluating both the models, it was concluded that thermodynamic (BP, SE, CMA and PC) descriptors play an important role for the activity. From the above analysis, it was inferred that model-II could be used as theoretical prediction of biological activity for design of new molecules.

BP	SE	РС
1.000	-	-
0.300	1.000	-
0.842	0.345	1.000
Correlation ma	atrix of mode	I-II
Correlation ma BP	atrix of mode CMA	I-II SE
Correlation ma BP 1.000	atrix of mode CMA -	I-II SE -
Correlation ma BP 1.000 0.887	atrix of mode CMA - 1.000	I-II SE - -
	BP 1.000 0.300 0.842	BP SE 1.000 - 0.300 1.000 0.842 0.345

CONCLUSION

QSAR analysis was performed on a series of antiinflammatory phenothiazines using molecular modeling program Chemoffice 2001. QSAR models were proposed for anti-inflammatory activity of the phenothiazines using ChemSAR descriptors employing sequential multiple regression analysis method. The selected models

Full Paper

were checked for multicolinearity. The predictive power of each model was estimated with bootstrapping r^2 method and leaves one-out cross validation method. It was observed from the selected models that biological activity of phenothiazine derivatives is governed by thermodynamic and steric properties of the molecules. The models also provide valuable insight into the mechanism of action of these compounds. The result of the study suggests involvement of partition coefficient in the mechanism of anti-inflammatory action of phenothiazine and bulky substituents are favorable for activity. The study will be helpful in the design of better anti-inflammatory analogs of phenothiazine derivatives for antiinflammatory activity.

ACKNOWLEDGEMENTS

One of the authors, Ashok Narute, likes to thank All India Council for Technical Education (AICTE) for providing fellowship. The authors wish to thank specially Principal, Yash Institute of Pharmacy, Aurangabad for providing the necessary facilities for undertaking this research work.

ABBREVIATIONS

NSAIDs - Non-Steroidal Anti-inflammatory Agents; QSAR - Quantitative Structural-Activity Relationship.

Organic CHEMISTRY

An Indian Journal

REFERENCES

- [1] S.Ajmani, S.Chaturvedi; Eur.J.Med.Chem., **33**, 47 (**1988**).
- [2] S.Ajmani, S.Chaturvedi; Indian J.Pharm.Chem., 63B, 114 (2001).
- [3] K.Saxena, V.Srivastava, A.Kumar; Indian Drugs, 35(4), 216 (1998).
- [4] A.Hopfinger, B.Burke; 'Concept and Application of Molecular Similarity', 2nd Ed., John Wiley; New York, (1990).
- [5] P.Gund, N.Jensen; 'Quantitative Structure Activity Relationship of Drugs', 1st Ed., Academic Press; New York, (1983).
- [6] M.Verma, V.Gujrati, A.Saxena, K.Sankar; J.Indian Chem.Soc., 58(11), 1119 (1981).
- [7] C.S.Chem.Office; Version 6.0, Cambridge Soft Corporation, Software Publishers Association, 1730 M Street, NW, Suite 700, Washington D.C. 20036 (202), 452-1600 USA.
- [8] C.Hansch, A.Leo, D.Hoekman; 'Exploring QSAR; Hydrophobic, Electronic and Steric constants', 2, American Chemical Society; Washington DC, (1995).
- [9] C.Hansch, A.Leo; 'Substituent constants for correlation analysis in Chemistry and Biology', John Wiley; New York, (1996).
- [10] A.K.Gupta, M.A.Babu, S.G.Kaskhedikar; Indian J.Pharm.Sci., 66, 396 (2004).
- [11] N.Draper, H.Smith; 'Applied Regression Analysis', John Wiley; New York, (1996).
- [12] V.M.Viswanathan, A.K.Goshe, G.R.Revanker, R.K.Robbins; J.Chem.Inf.Comput.Sci., 29, 163 (1989).