December 2008

Organic CHEMISTRY

Trade Science Inc.

An Indian Journal FUII Paper OCALJ, 4(12), 2008 [540-548]

QSAR study of sulfonamides as inhibitors of carbonic anhydrase

P.P.Singh*, R.B.Singh, S.Kiran, Anand Tiwari, V.Goverdhan Rao Department of Chemistry, Bareilly College, Bareilly, (U. P.), (INDIA) E-mail:rbs_mlk@sify.com,kiransurat@rediffmail.com Received: 26th November, 2008; Accepted: 1st December, 2008

ABSTRACT

Quantum chemical reactivity descriptors based QSAR study of 48 sulfonamide derivatives as inhibitors of carbonic anhydrase has been studied in three different sets. The best OSAR model has correlation coefficient above 0.84 in one set the other two sets have the corresponding values above 0.79 and 0.81. The most important descriptor is heat of formation followed by molecular weight and total energy. The combination of descriptors providing the best model are heat of formation, molecular weight, total energy and LUMO energy. The CA enzyme-sulfonamide reaction appears to be favoured by energy change. © 2008 Trade Science Inc. - INDIA

KEYWORDS

QSAR; LUMO: CAIs.

INTRODUCTION

The primary function of the enzyme carbonic anhydrase is to inter convert carbon dioxide and bicarbonate to maintain acid-base balance in blood and other tissues and to help transport carbondioxide out of tissues. The structure of enzyme is given in figure 1.

The mode of action of the enzyme is demonstrated by the following diagram figure 2, which shows stepwise action.

Mode of action of inhibitor

Two main classes of carbonic-anhydrase inhibitors (CAIs) are known; the metal complexing anions and the unsubstituted sulfonamides, which bind to the zinc ion of the enzyme either by substituting the non-protein zinc ligand or add to the metal coordination sphere generating trigonal bipyramidal species.

His -Histidine, Thr-Threonine, Gln-glutamine, Glu-glutamic acid Figure 1: Structure of carbonic-anhydrase

541

Sulfonamides, which are the most important CAIs^[1,2] bind in a tetrahedral geometry of the Zinc ion in deprotonated state, with the nitrogen atom of the sulfonamide moiety and is coordinated to Zinc. In all these adducts the deprotonated sulfonamide is coordinated to the Zinc ion of the enzyme, and its NH moiety donates a hydrogen bond to the Oxygen of Thr 199, which in turn donates a hydrogen bond to the carboxylate group of Glu 106.

One of the oxygen atoms of the SO_2 NH moiety also participates in a hydrogen bond with the back bone NH moiety of Thr 199 in figure 3.

Extensive hydrophobic and heterocyclic /aromatic part of the inhibitor molecule and active site of the aminoacid residues assure a strong affinity of sulfonamides to the CA active site.

Prediction of the biological activity of a molecule

Figure 3: CA inhibition mechanism by sulfonamide and anionic inhibitors.

from a set of structure-based descriptors is very useful for drug discovery^[3]. Quantitative structure-activity relation ship (QSAR) can be captured in statistical models relating structure to activity relationship in a particular reaction. The QSAR procedure begins with the identification of set of molecules and measured activities by chemical methods.

In this chapter we present the QSAR prediction of forty eight derivatives of sulfonamide which are inhibitors of CA. The set of descriptors used for QSAR are given under materials and method. Descriptors in different combinations have been used for statistical model by making MLR analysis.

MATERIALAND METHOD

The study materials of this chapter are 48 derivatives of benzene sulfonamides

as carbonic anhydrase inhibitors, whose biological activity has been measured by two different methods. On the basis of the measurement of their biological activity, they have been presented in two different sets (TABLES 1 and 2)^[4].

The activity of compounds of TABLEA are given

 TABLE 1: Bovine carbonic anhydrase inhibition activities of sulfonamides

TABLE 2: Human carbonic anhydrase inhibition activities of sulfonamides

	Benzene su	ılfonamide		Benzene sulfonamide		
Compound	R	pK ^a _i (0.2°C)	$pK_{i}^{a}(15^{\circ}C)$	Compound	R	Log K
1	Н	0.215	0.124	20	Н	6.69
2	$p-NH_2$	-0.363	-0.398	21	4-CH ₃	7.09
3	p-Cl	0.721	0.959	22	$4-C_2H_5$	7.53
4	p-CH ₃	0.420	0.496	23	$4-C_3H_7$	7.77
5	p-CN	0.959	1.187	24	$4-C_4H_9$	8.3
6	p-Br	0.921	0.959	25	$4 - C_5 H_{11}$	8.86
7	p-NO ₂	1.046	1.26	26	$4-CO_2CH_3$	7.99
8	p-CH ₃ O	0.347	0.301	27	$4-CO_2C_2H_5$	8.5
9	p-CH ₃ NH	-0.176	-0.046	28	$4-CO_2C_3H_7$	8.77
10	p-CH ₃ CO	0.959	0.886	29	$4-CO_2C_4H_9$	9.11
11	$m,p-(Cl)_2$	1.400	1.552	30	$4-CO_2C_5H_{11}$	9.39
12	M-NO ₂ -p-Cl	1.769	1.602	31	$4-CO_2C_6H_{13}$	9.39
13	m-CF ₃ -p-NO ₂	1.854	1.658	32	4-CONHCH ₃	7.08
14	m-Cl	0.638	0.921	33	4-CONHC ₂ H ₅	7.53
15	m-CH ₃	0.301	0.223	34	4-CONHC ₃ H ₇	8.08
16	$M-NO_2$	0.886	1.125	35	4-CONHC ₄ H ₉	8.49
17	o-CH ₃	-0.204	-0.008	36	4-CONHC ₅ H ₁₁	8.75
18	o-Cl	0.496	0.62	37	4-CONHC ₆ H ₁₃	8.88
19	o-NO ₂	0.331	0.455	38	4-CONHC ₇ H ₁₅	8.93
PK ^a , is measure	ed in units of 10 ⁻⁵	M, Bovine means	s ox\ cow family	39	3-CO ₂ CH ₃	5.87
1			•	40	3-CO ₂ C ₂ H ₂	6.21

in terms of PK_{i}^{a} at two different temperatures and of TABLE B are given in terms of log K values.

The study has accordingly been made under three sets. First set includes the sulfonamide derivatives whose biological activity is given in terms of PK_{i}^{a} at temperature 0.2°C, the second set includes whose acivity is reported in terms of

PK^a_i but at temperature 15^oC. The third set includes derivatives whose activity is reported in terms of log K.

For QSAR prediction the 3D modeling and geometry optimization of all the derivatives have been done with the help of PC MODEL software using the semiempirical PM3 Hamiltonian. The calculations have been performed with Win MOPAC 7.21 software by applying keywords PM3 charge = O Gnorm = 0.1 GEO-OK vector density. The descriptors that have been used for QSAR modeling are: -

- a. Heat of Formation (ΔH_f)
- b. Molecular Weight (MW)
- c. Total Energy (TE)
- d. HOMO Energy (\in HOMO)
- e. LUMO Energy (\in LUMO)
- f. Electronegativity (χ)

40 41 $3-CO_2C_3H_7$ 6.44 3-CO₂C₄H₉ 42 6.95 43 3-CO₂C₅H₁₁ 6.86 44 4.41 $2-CO_2CH_3$ 45 4.8 $2-CO_2C_2H_5$ 46 5.28 $2-CO_2C_3H_7$ 47 $2-CO_2C_4H_9$ 5.76 48 2-CO₂C₅H₁₁ 6.18

g. Absolute Hardness (η)

The values of these descriptors have been calculated with the help of following equation given under theory using the Win MOPAC 7.21 software.

Theory

In DFT the electronegativity, commonly known to a chemist, is defined as the negative of a partial derivative of energy E of an atomic or molecular system with respect to the number of electrons N with a constant external potential $v(\gamma)^{[5]}$.

$$\boldsymbol{\mu} = -\boldsymbol{\chi} = -(\mathbf{E} / \mathbf{N}) \boldsymbol{\nu}(\boldsymbol{\gamma}) \tag{1}$$

In accordance with the earlier work of Iczkowski and Margrave^[6], it should be stated that when assuming a quadratic relationship between E and N a finite (4)

(7)

543

difference approximation Eq. 1 may be rewritten as

$$\chi = -\mu = -(IE + EA)/2$$
 (2)

Where IE and EA are the vertical ionization energy and electron affinity, respectively, thereby recovering the electronegativity definition of Mullken^[7]. Moreover, a theoretical justification was provided for Sanderson's principle of electronegativity equalization, which states that when two are more atoms come together to form a molecule, their electronegativities become adjusted to the same intermediate value^[8-10]. The absolute hardness η is defined as^[11].

$\eta = 1/2 \left(\delta \mu / \delta N \right) \nu(\Upsilon) = 1/2 \left(\delta 2E / \delta N 2 \right) \nu(\Upsilon)$ (3)

Where E is the total energy, N is the number of electrons of the chemical species, and $v\Upsilon$) is the external potential. The operational definition of absolute hardness and electronegativity is given as:

$\eta = 1/2(IR - EA)$

Where IP and EA are the ionization potential and electron affinity, respectively, of the chemical species. According to Koopman's theorem, the IP is simply the eigenvalue of the HOMO with change of sign and the A is the eigenvalue of the LUMO with change of sign^[12]; hence, Eqs. 4-6 can be written as:

$$\eta = 1/2(\varepsilon_{\text{LUMO}} - \varepsilon_{\text{HOMO}})$$
(5)
$$\chi = -\mu = 1/2(\varepsilon_{\text{LUMO}} + \varepsilon_{\text{HOMO}})$$
(6)

With regard to QSAR of a chemical system, the total energy also played an important role. The total energy of a molecular system is the sum of the total electronic energy, E_{ee} and the energy of the internuclear repulsion, E_{nr} . The total electronic energy of the system is given by^[13].

E = 1/2 R(HF)

Where P is the density matrix and H is the one-electron matrix. F is fock matrix.

Finally, a more general, but important, property of a molecular system, the molecular weight has also been tested as a descriptor.

RESULTS AND DISCUSSION

Inhibition of CA is influenced by energy, entropy, polarity and reactivity indices of sulfonamide compounds^[14]. The sulfonamides bind as anions to the zinc ion of the CA active site^[15,16]. The inhibition properties of these compounds can be accounted by several factors. These include the stability of CA enzyme-sulfonamide complex which is stabilized by a large favorable enthalpy change. Another factor that influences inhibition properties of the, inhibitors is a weak coordi-

Figure 4: Interaction of sulfonamides with the active centre of carbonic anhydrase

nation bond between the active site zinc ion and sulfonamide nitrogen which is enormously supplemented by the cooperative interaction of the organic moieties of the inhibitor with the amino acid side chains of the active site. It was found that there is no involvement of a positive hydrophobic term (log P) in the inhibition process, suggesting that the binding of the sulfonamides to the active centre does not depend on hydrophobic interactions^[17].

Shinagawa^[18] assumed that the NH_2 group of sulfonamide is probably involved in hydrogen bonding with the OH⁻ ion on one side and the imidazole ring on the other side.

In the enzyme an oxygen atom of the SO_2 of sulfonamide is supposed to bind with the zinc ion of the enzyme. The model is presented below in figure 4.

Since inhibition of CA is influenced by enthalpy change, and also by energy, entropy, polarity and reactivity indices of sulfonamide, we have chosen such descriptors for QSAR study which meet these requirements. The QSAR mainly is based on two sets of descriptors one is quantum chemical parameters such as ϵ HOMO, ϵ LUMO, absolute hardness (η), electronegativity (x), and another energy parameters such as heat of formation \blacktriangle Hf°, total Energy TE. The two sets of descriptors were used in deriving regression models.

The values of descriptors have been evaluated by solving the relevant equations given in theory with the help of Win MOPAC 7.21 software using the semiempirical PM3 Hamiltonian.

First set

This set includes those sulfonamide derivatives

Full	Paper									
	TAE	BLE 3: Value Heat of	s of descript Molecular	tors and act Total	ivity in te HOMO	rms of Pl LUMO	Ki at 0.2ºC a	and at 15°C Electroneg	Activity	Activity
Comp.	ĸ	formation (keel/mole)	Weight	energy (Hartroo)	energy	energy	hardness	ativity	PK1 0.2°C	PK1 15°C
1		(KCal/IIIOIe)	157 187	(nartree)	(ev)	(ev)	3 8 3 5	5 717	0.215	$\frac{15^{\circ}C}{0.124}$
2	n NH.	102.803	172 201	-79.909	-9.332	-1.005	3.602	-5.717	0.213	0.124
2	$p-1011_2$	00 745	101 632	-09.423	-0.900	1 081	3.002	-5.504	-0.303	-0.398
3	p-Cl	99.74J	171.032	-71.757	-9.331	-1.901	2 8 2 4	-5.750	0.721	0.939
4 5	$p-CH_3$	90.462	1/1.214	-07.139	-9.492	-1.045	5.024 3.750	-3.007	0.420	0.490
5	p-CN	142.510	226.092	-92.131	-9.757	-2.219	2 915	-3.978	0.939	0.050
0 7	p-bi	114.474	230.083	-07.000	-9.033	-2.020	2 5 4 5	-5.840	1.046	1 260
/ 0	$p-NO_2$	67 100	202.164	-111.04/	-9.010	-2.520	5.545 2 797	-0.003	0.247	0.201
0	$p-CH_{3}U$	102 146	107.215	-99.331	-9.374	-1.601	2.562	-3.300	0.347	0.301
9 10	p-CH ₃ NII	65 202	100.228	-90.333	-0.075	-1.750	2 917	-5.313	-0.170	-0.040
10	$p-CH_3CO$	03.205	199.224	-104.023	-9.030	-2.025	3.817 2.729	-3.839	0.939	0.000
11	$\frac{111,p}{(C1)_2}$	94.707	220.077	-105.505	-9.312	-2.050	2.720	-3.764	1.400	1.552
12	M-NO ₂ -p-Cl	181.872	230.030	-125.415	-9./31	-2.338	3.080 2.555	-6.044	1.709	1.002
13	$m-CF_3-p-NO_2$	35.070	270.183	-166.54/	-9.949	-2.839	3.333	-6.394	1.854	1.058
14	m-Cl	100.047	191.632	-91.734	-9.608	-1.986	3.811	-5.797	0.638	0.921
15	m-CH ₃	96.787	171.214	-87.157	-9.510	-1.859	3.825	-5.685	0.301	0.223
16	$M-NO_2$	186.938	202.184	-111.642	-9.942	-2.302	3.820	-6.122	0.886	1.125
17	o-CH ₃	99.041	171.214	-87.153	-9.411	-1.877	3.767	-5.644	-0.204	-0.080
18	o-Cl	102.185	191.632	-91.734	-9.479	-1.959	3.760	-5.719	0.496	0.620
19	o-NO ₂	191.133	202.184	-111.636	-9.737	-2.303	3.717	-6.020	0.331	0.455
rivatives, have been evaluated by techniques described earlier and results are presented above in TABLE 3. Using the values of descriptors given in TABLE 1, several QSAR models using different combinations of descriptors have been tried and MLR equations have been solved but only 18 combinations have been cho- sen which have correlation coefficient value above 0.81. Such MLR equations are presented below:- APA1=0.0132407*Mw-0.968732*HOMO-11.1984 rCV^2=0.6811 r^2=0.81108 APA2=0.0138332*Mw+0.00112645*TE-0.978615*HOMO- 11.2959 rCV^2=0.421382 r^2=0.81148 APA3=0.0140986*Mw+0.00732505*TE-1.29366*AH-8.89576 rCV^2=0.455042 r^2=0.811188 APA4=0.0127658*Mw-0.918336*HOMO-0.0954868*LUMO- 10.8215 rCV^2=0.555849 r^2=0.811617 APA5=0.0127658*Mw-1.01382*HOMO-0.190974*En-10.8215 rCV^2=0.555849 r^2=0.811617				APA8=(rCV ² =(r ² =0.81 APA9= rCV ² =(r ² =0.81 APA10: 0.99093 rCV ² =(r ² =0.81 APA11: 1.611*L rCV ² =(r ² =0.81 APA12: 1.44832 rCV ² =(r ² =0.81 APA13: 0.32344 rCV ² =(r ² =0.81 APA14: 0.64689 rCV ² =(r ² =0.81 APA15:	0.0127658 0.555849 1617 0.012765 0.555849 1617 =-0.0019 6*HOMC 0.413362 1659 =-0.0018 UMO-3.7 0.119792 7626 =-0.0012 *AH-9.46 0.47182 7438 =0.01390 6*LUMO 0.406946 4434 =0.01390 2*En-10.2 0.406946 4434 =0.01390	3*Mw+0.823 58*Mw+0.825 58*Mw+0.825 58*Mw+0.825 96709*Hf+0 96709*Hf+0 738 5417*Hf+0 736 12*Mw+0.0 -10.2952 912*Mw+0.0 9252 12*Mw+0.0	285*LUMO-1 32285*En-1.0 0.0137977*M 0.0149091*M 0.0137966*Mv 00431402*TE 00431402*TE	.83667*A] 01382*AF w+0.0011 [w+0.0160 w+0.0085. -0.835874 E-1.15932 -0.512428	H-10.8215 I-10.8215 7945*TE 0461*TE 5005*TE I*HOMO *HOMO	
APA6=0.0 rCV^2=0.53 r^2=0.8116	127658*Mw-0.82 55849 117	2285*HOMO	-0.190974*A	H-10.8215	rCV^2=(r^2=0.81	2 An-10.).406946 .4434	.2732			

544

Órganic CHEMISTRY Au Indian Journal

APA16=0.0139012*Mw+0.00431402*TE-1.15932*LUMO
+1.67175*En-10.2952
rCV^2=0.406946
r^2=0.814434
APA17=0.0139012*Mw+0.00431402*TE+0.512428*LUMO-
1.67175*AH-10.2952
rCV^2=0.406946
r^2=0.814434
APA18=0.0139012*Mw+0.00431402*TE+0.512428*En-
1.15932*AH-10.2952
rCV^2=0.406946
r^2=0.814434

All the above 18 models have very high predictive power as their correlation coefficients are above 0.81, and cross validation coefficients above 0.40. The best models are APA 12 and APA 13. Their coefficient values, and combination of descriptors are given below :-

Predicted activity	rCV^2	r^2	Descriptors used in regression analysis
APA12	0.47	0.81	Heat of Formation, Molecular Weight, Total Energy, Absolute Hardness
APA13	0.40	0.81	Molecular Weight, Total Energy, HOMO Energy, LUMO Energy

The predicted activities along with their observed activity of these models are given below TABLE 4, which clearly indicates the closeness between the two values. The closeness in the values is also demonstrated by the graph figure 5.

Comp	Predicted activity	Predicted activity	Observed
Comp.	APA12	APA13	activity
1	0.165	0.138	0.215
2	-0.216	-0.223	-0.363
3	0.604	0.580	0.721
4	0.237	0.239	0.420
5	0.732	0.694	0.959
6	1.337	1.325	0.921
7	0.917	0.882	1.046
8	0.275	0.297	0.347
9	-0.157	-0.138	-0.176
10	0.762	0.749	0.959
11	1.025	1.017	1.400
12	1.268	1.358	1.769
13	2.053	1.977	1.854
14	0.663	0.647	0.638
15	0.261	0.259	0.301
16	1.000	1.089	0.886
17	0.200	0.183	-0.204
18	0.547	0.530	0.496
19	0.847	0.918	0.331

TABLE 4:	Predicted	and observed	l activitv

Figure 5 : Plot of APA 12 showing observed activity versus predicted activity for the 19 compounds

Second set

The values of descriptors for the compounds whose activity has been measured in terms of PKi, but at temperature 15° C have been evaluated and are presented in TABLE 3, along with the activity measured in terms of PKi at temperature 15° C.

Several QSAR models using the values of TABLE 3 in different combinations of descriptors have been tried and MLR equations have been developed, but only 14 combinations have been chosen which have correlation coefficient values above 0.74.

The MLR equations of these combinations are given below :-

PA1=0.0114642*Mw-1.05477*HOMO-11.6015 rCV^2=0.512319 r^2=0.757454 PA2=0.00901599*Mw-1.2237*AH-8.15849 rCV^2=0.438204 r^2=0.745429 PA3=0.0140942*Mw+0.00500001*TE-1.09864*HOMO-12.03 rCV^2=0.462112 r^2=0.765559 PA4=0.0154489*Mw+0.0201582*TE 1.6764*LUMO 3.758	344
PA4=0.0154489*Mw+0.0201582*TE-1.6764*LUMO-3.758 rCV^2=0.477954 r^2=0.754417	\$33
PA5=0.0142036*Mw+0.0127161*TE-1.55112*AH-9.799 rCV^2=0.50891 r^2=0.788957	195
PA6=0.0106105*Mw-0.964172*HOMO-0.171663*LUM 10.9239 rCV^2=0.479968 r^2=0.759236	0-
PA7=0.0106105*Mw-1.13584*HOMO-0.343327*En-10.92 rCV^2=0.479968 r^2=0.759236	239
PA8=0.0106105*Mw-0.792509*HOMO-0.343327*AH-10.92 rCV^2=0.479968	239

Full Paper

Full Paper 🛥

The best models are PA 13 and PA 14 whose coefficient values and combination of descriptors are presented below :-

Predicted activity	rCV^2	r^2	Descriptors used in regression analysis
APA12	0.512993	0.789529	Molecular Weight, Total Energy, HOMO Energy, LUMO Energy
APA13	0.497159	0.789198	Heat of Formation, Molecular Weight, Total Energy, Absolute Hardness

The predicted activities and the observed activity of these models are given below TABLE 5, and are demonstrated in graph figure 6 which clearly shows close-

Figure 6 : Plot of PA 13 showing observed activity versus predicted activity for the 19 compounds

TABLE 5: Predicted and observed activity	activity
--	----------

	IADLE 5. I ICuicu	u anu obsci vcu activi	uy
Comp.	Predicted activity	Predicted activity	Observed
	FA 13	FA 14	activity
1	0.281	0.291	0.124
2	-0.154	-0.177	-0.398
3	0.684	0.688	0.959
4	0.303	0.319	0.496
5	0.894	0.882	1.187
6	1.472	1.471	0.959
7	1.102	1.047	1.260
8	0.241	0.269	0.301
9	-0.128	-0.152	-0.046
10	0.737	0.769	0.886
11	1.066	1.069	1.552
12	1.366	1.350	1.602
13	1.833	1.855	1.658
14	0.742	0.753	0.921
15	0.330	0.347	0.223
16	1.135	1.137	1.125
17	0.278	0.282	-0.080
18	0.628	0.629	0.620
19	0.993	0.975	0.455

ness between the observed and predicted activity.

Third set

The inhibition activity of derivatives of benzene sulfonamides are reported in terms of log K. The values of various quantum chemical descriptors of the derivatives, have been evaluated by techniques described in material and method and the results are presented below in TABLE 6 along with the observed activity in terms of log K.

Seven QSAR models which have correlation coefficient values above 0.81 have been chosen, which are presented below: -

SPA 1=-0.0193872*Hf+0.871599*Mw+1.66239*TE-27.8945* LUMO-47.0456 rCV^2=0.682865 r^2=0.848966 SPA2=-0.0170746*Hf+0.278119*Mw+0.498118*TE-20.3694 *En+82.5278 rCV^2=0.56173 r^2=0.840678 SPA3=0.677959*Mw+1.25548*TE-13.4802*HOMO-37.9962 *En+17.7615 rCV^2=0.584151 r^2=0.816355 SPA4=0.677959*Mw+1.25548*TE+24.516*HOMO-37.9962 *AH+17.7615 rCV^2=0.584151 r^2=0.816355 SPA5=0.677959*Mw+1.25548*TE-13.4802*LUMO-11.0357*

TABLE 6: Values of descriptors and activity in terms of log K

Benzene	sulfonamide
---------	-------------

		Heat of	Malagular	Total	HOMO	LUMO	Abaaluta	Flootnonog	
Comp.	R	Formation	woight	energy	energy	energy	Absolute	etivity	Activity
		(kcal/mole)	weight	(Hartree)	(eV)	(eV)	naruness	allvity	
20	Н	106.162	157.187	-79.969	-9.552	-1.883	3.834	-5.717	6.690
21	4-CH ₃	96.482	171.214	-87.159	-9.493	-1.843	3.825	-5.668	7.090
22	$4-C_2H_5$	92.863	185.240	-94.316	-9.488	-1.837	3.826	-5.662	7.530
23	$4 - C_3 H_7$	86.654	199.267	-101.480	-9.504	-1.849	3.827	-5.676	7.770
24	$4-C_4H_9$	81.232	213.294	-108.640	-9.512	-1.848	3.832	-5.680	8.300
25	$4 - C_5 H_{11}$	75.801	227.321	-115.799	-9.510	-1.849	3.830	-5.680	8.860
26	$4-CO_2CH_3$	130.385	215.223	-116.676	-9.596	-2.289	3.654	-5.942	7.980
27	$4-CO_2C_2H_5$	126.307	229.250	-123.836	-9.491	-2.330	3.581	-5.910	8.500
28	$4-CO_2C_3H_7$	120.832	243.277	-131.001	-9.647	-2.261	3.693	-5.954	8.770
29	$4-CO_2C_4H_9$	115.431	257.304	-138.162	-9.648	-2.260	3.694	-5.954	9.110
30	$4-CO_2C_5H_{11}$	110.005	271.331	-145.322	-9.648	-2.261	3.694	-5.955	9.390
31	$4-CO_2C_6H_{13}$	104.579	285.357	-152.482	-9.650	-2.260	3.695	-5.955	9.390
32	4-CONHCH ₃	67.316	214.239	-114.025	-9.663	-2.097	3.783	-5.880	7.080
33	4-CONHC ₂ H ₅	61.140	228.265	-121.177	-9.657	-2.088	3.785	-5.872	7.530
34	4-CONHC ₃ H ₇	55.895	242.292	-128.337	-9.657	-2.089	3.784	-5.873	9.080
35	4-CONHC ₄ H ₉	50.468	256.319	-135.497	-9.655	-2.089	3.783	-5.872	8.490
36	4-CONHC ₅ H ₁₁	45.049	270.346	-142.657	-9.654	-2.089	3.782	-5.872	8.750
37	4-CONHC ₆ H ₁₃	39.618	284.373	-149.817	-9.653	-2.089	3.782	-5.871	8.880
38	4-CONHC ₇ H ₁₅	34.189	298.399	-156.977	-9.656	-2.089	3.783	-5.873	8.930
39	3-CO ₂ CH ₃	130.284	215.223	-116.674	-9.656	-2.189	3.733	-5.922	5.870
40	$3-CO_2C_2H_5$	125.830	229.250	-123.837	-9.691	-2.201	3.745	-5.946	6.210
41	$3-CO_2C_3H_7$	120.767	243.277	-130.993	-9.555	-2.186	3.684	-5.870	6.440
42	$3-CO_2C_4H_9$	114.893	257.304	-138.158	-9.688	-2.198	3.745	-5.943	6.950
43	$3-CO_2C_5H_{11}$	109.471	271.331	-145.318	-9.689	-2.198	3.745	-5.944	6.860
44	$2-CO_2CH_3$	134.094	215.223	-116.669	-9.775	-2.200	3.787	-5.988	4.410
45	$2-CO_2C_2H_5$	130.199	229.250	-123.834	-9.792	-2.189	3.802	-5.990	4.800
46	$2-CO_2C_3H7$	124.769	243.277	-130.994	-9.788	-2.186	3.801	-5.987	5.280
47	$2-CO_2C_4H_9$	119.353	257.304	-138.155	-9.788	-2.187	3.801	-5.987	5.760
48	$2-CO_2C_5H_{11}$	113.933	271.331	-145.315	-9.789	-2.187	3.801	-5.988	6.180

En+17.7615

rCV^2=0.584151 r^2=0.816355 SPA 6=0.677959*Mw+1.25548*TE-24.516*LUMO+ 11.0357*AH+17.7615 rCV^2=0.584151 r^2=0.816355 SPA7=0.677959*Mw+1.25548*TE-24.516*En-13.4802*AH +17.7615 rCV^2=0.584151 r^2=0.816355

Best QSAR models are obtained by MLR equations are SPA-1 and SPA-2 the combination of descriptors of these models are given below along with coefficient values.

Predicted activity	rCV^2	r^2	Descriptors used in regression analysis
SPA1	0.682865	0.848966	Heat of Formation, Molecular Weight, Total Energy, LUMO Energy
SPA2	0.561730	0.840678	Heat of Formation, Molecular Weight, Total Energy, Electronegativity

Predicted activity of compounds along with the observed activity of the best models are given below in TABLE 7.

THEFT TO CONCERNING ODDER YOU WORKING							
Comn	Predicted activity	Predicted activity	Observed				
comp.	SPA1	SPA2	activity				
20	7.480	6.494	6.690				
21	6.829	7.170	7.090				
22	7.054	7.557	7.530				
23	7.831	7.959	7.770				
24	8.246	8.293	8.300				
25	8.702	8.754	8.860				
26	7.893	7.620	7.980				
27	9.446	9.512	8.500				
28	7.959	7.647	8.770				
29	8.352	8.055	9.110				
30	8.791	8.482	9.390				
31	9.215	8.889	9.390				
32	7.333	7.111	7.080				
33	7.520	7.516	7.530				
34	7.970	7.948	9.080				
35	8.396	8.400	8.490				
36	8.841	8.842	8.750				
37	9.277	9.282	8.880				
38	9.703	9.676	8.930				
39	5.116	5.996	5.870				
40	5.871	6.171	6.210				
41	5.867	7.825	6.440				
42	6.633	7.025	6.950				
43	7.066	7.442	6.860				
44	5.367	4.836	4.410				
45	5.432	4.937	4.800				
46	5.791	5.388	5.280				
47	6.232	5.819	5.760				
48	6.665	6.235	6.180				

 TABLE 7: Predicted and observed activity

QSAR models SPA-1,SPA-2 provide predicted values which are close to observed values (log K). For better representation the closeness in values is also demonstrated by graphs figure 7.

Figure 7 : Plot of SPA 1 showing observed activity versus predicted activity for the 29 compounds

CONCLUSIONS

1. The correlation coefficient values of the best QSAR model of the inhibitors of the first set is 0.81, of the second set is 0.789 and of the third set is 0.84. The values clearly indicate that the models have reliable predictive power.

- 2. The first descriptor in almost all the above models is heat of formation. This indicates that CA enzymesulfonamide complex is stabilized by favorable enthalpy change.
- 3. The second important descriptor is molecular weight, which is a parameter of steric factor. This factor also be considered as influencing factor.
- 4. Total energy is the third important descriptor, The CA enzyme -sulfonamide reaction appears to be favoured by energy change.

REFERENCES

- L.Tarko, S.Calafeteanu, Rev.Chim., Bucureşti, 58, 191 (2007).
- [2] Lorentz Jantschi, Sorana Daniela Bolboaca; Electron J.Biomed., 2, 22-33 (2006).
- [3] S.P.Gupta; Chem.Rev., 87, 1183 (1987).
- [4] N.Kakeya, N.Yata, A.Kamada, M.Aoki; Chem. Pharm. Bull., **17**, 1010 (**1969**).
- [5] R.G.Parr, W.Yang; 'Density Functional Theory of Atoms and Molecules', Oxford University Press, New York, (1989).
- [6] R.P.Iczkowski, J.L.Margrave; J.Am.Chem.Soc., 83, 3547 (1961).
- [7] R.S.Mulliken; J.Chem.Phys., 2, 782 (1934).
- [8] R.T.Sanderson; Science, 121, 207 (1955).
- [9] R.T.Sanderson; 'Chemical Bonds and Bond Energy', Academic: New York, (1976).
- [10] R.T.Sanderson; 'Polar Covalence', Academic Press: New York, (1983).
- [11] R.G.Parr, R.G.Pearson; J.Am.Chem.Soc., 105, 7512 (1983).
- [12] R.G.Parr, R.A.Donnelly, M.Levy, W.E.Palke; J.Chem.Phys., 68, 3801 (1978).
- [13] R.G.Parr, L.V.Szentpaly, S.Liu; J.Am.Chem.Soc., 121, 1922 (1999).
- [14] Erol Eroglu, Hasan Türkmen, Semra Guler, Selami Palaz, Oral Oltulu; Int.J.Mol.Sci., 8, 145-155 (2007).
- [15] F.Abbate, A.Casini, T.Owa, A.Scozzafava, C.T. Supuran; Bioorg.Med.Chem.Lett., 14, 217 (2004).
- [16] B.W.Clare, C.T.Supuran; European Journal of Medicinal Chemistry, 32(4), 311-319 (1997).
- [17] Abhilash Thakur, Mamta Thakur, Padmakar V.Khadikar; 'General Papers', ARKIVOC, 14, 87-102 (2006).
- [18] Y.Shinagawa, Y.Shinagawa; Int.J.Quantum Chem.Quantum Boil.Symp., 1, 169 (1974).

Full Paper