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ABSTRACT 

The matrix metalloproteinase (MMP) inhibition activity in a class of selective α-sulfone hydroxamates has been 
quantitatively analyzed in terms of chemometric descriptors. The statistically validated quantitative structure-activity 
relationship (QSAR) models provided rationales to explain the MMP-2 and MMP-13 inhibition activities of these 
compounds. The descriptors identified through combinatorial protocol in multiple linear regression (CP-MLR) analysis have 
highlighted the role of different atomic properties such as masses, polarizabilities, electronegativities and van der Waals 
volumes as the weighting components. Additionally, the structural information content, the topological charges, the number 
of total secondary and tertiary C (sp3) atoms and the functionalities R--CR--X and R--CR--X have also shown their 
importance for inhibition of the MMP. PLS analysis has further corroborated the dominance of the CP‐MLR identified 
descriptors.  

Key words: Isonipecotamide α-tetrahydropyranyl and α-piperidine sulfone hydroxamates, MMP inhibitors, Combinatorial 
protocol in multiple linear regression (CP-MLR) analysis, Chemometric descriptors, QSAR. 

INTRODUCTION 

Matrix metalloproteinases (MMPs), the zinc-dependent enzymes, are responsible for remodeling and 
degradation of all components of the extracellular matrix1,2, but excessive activity of MMPs has been 
associated in cancer3,4, arthritis5 and cardiovascular disease6–9. MMP inhibitors (MMPIs) have therefore 
been identified as therapeutic agents to apprehend the development of such disease states10-12. The MMP 
family of enzymes incorporates at least 24 dissimilar mammalian isozymes, but MMP-13 has been 
recognized as a important target which is involved in cancer, osteoarthritis, and cardiovascular disease. 

Treatment of patients with broad-spectrum MMPIs results into stiffening of the joints known as 
musculoskeletal syndrome9 (MSS). MMP-1 has long been thought to be a cause whose inhibition plays a 
role in MSS. In addition, MMP-14 knockout mice suffer connective tissue disease due to inadequate 
collagen turnover13 and impaired endochondral ossification14 reminiscent of joint lesions in MSS. Efforts 
have therefore been made earlier on potential inhibitors of MMP-13 while sparing other MMPs to achieve 
joint safety15-28. 

In order to enhance MMP-13 selectivity, sparing MMP-1 and MMP-14, the P′ region of the MMPI’s 
interacting with S′1 pocket of the enzyme continues the research field of interest. Following the dual-sparing 
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hypothesis, Kolodziej et al.29,30  have explored two series of hyroxamates as the novel selective inhibitors of 
MMP-13. The first series29 consists of isonipecotamide α-tetrahydropyranyl and α-piperidine sulfone 
hydroxamates (Fig. 1A), while the second series30 comprise of N-aryl piperazine α-sulfones and N-aryl 
piperazine α-tetrahydropyranyl sulfone hydroxamates (Fig. 1B). Interaction of the amide N-substituents 
(first series) or the distal phenyl group (second series) deep in the S′1 pocket was expected to affect isozyme 
selectivity across the MMP family. These studies have therefore afforded in learning about P′1 
manipulations toward optimizing MMP-13 selectivity.  

In both reported series, the structure-activity relationship (SAR) studies were, however, targeted at 
the alterations of substituents at different positions and provided no rationale to reduce the trial-and-error 
factors. Hence, the present study is aimed at to establish the quantitative relationships between experimental 
activities and 0D-2D chemometric descriptors which may address the molecular structures of the compounds. 
Such a 2D-QSAR may provide the rationale for drug-design and help to explore the possible mechanism of 
action at the molecular level. In a congeneric series, where a relative study is being carried out, the 2D-
descriptors may play important role in deriving the significant correlations with biological activities of the 
compounds. The novelty and importance of a 2D-QSAR study is due to its simplicity for the calculations of 
different descriptors and their interpretation (in physical sense) to explain the inhibition actions of 
compounds at molecular level. 

EXPERIMENTAL 

Materials and methods 

In the present work, the hyroxamates represented by general structures in Fig. 1(A) and 1(B) and 
their inhibition activities (IC50s) towards MMP-2 and MMP-13 have been taken from the literature29,30. The 
activity, IC50, represents the concentration of a compound to accomplish 50% inhibition of MMP-2 
(gelatinase) and MMP-13 (collagen). The same is expressed as –log IC50, on a molar basis, and stand as the 
dependent variable for present study. The compounds along with their –log IC50 values for inhibition of 
MMP-2 and MMP-13 are documented in Table 1. MMP-2 is highly involved in the process of tumor 
invasion and metastasis and has been considered as a promising target for cancer therapy while inhibitors of 
MMP-13 can offer protection from the cartilage degradation associated with osteoarthritis. 

For modeling purpose the compounds from both series, listed in Table 1, have been numbered 
consecutively and considered as one data-set so that it includes diverse structural features of the compounds 
and exhibits sufficient activity variation. This data-set was next divided into training- and test-sets to insure 
external validation of derived models. Nearly 25% of the total compounds have been selected for the test-set. 
The selection has been made through SYSTAT31 using the single linkage hierarchical cluster procedure 
involving the Euclidean distances of the inhibition activity, -log IC50 values. The compounds were then 
selected from the generated cluster tree in such a way to keep them at a maximum possible distance from 
each other. The statistical index, r2

Test, representing the squared correlation coefficient between the observed 
and predicted activity values of compounds from test-set has been calculated to explain the fraction of 
explained variance in the test-set which is not part of regression/model derivation. It is a measure of 
goodness of the derived model equation. A high r2

Test value is always good. But considering the stringency 
of test-set procedures, often r2

Test values in the range of 0.500-0.600 are regarded as indicative predictive 
models. For simplicity, a test-set common both to MMP-2 and MMP-13 inhibition activities was preferred to 
impress upon similar structural features which are able to address two different activities.  

Molecular descriptors 

The structures of the compounds (Table 1) under study have been drawn in 2D ChemDraw32 using 
the standard procedure. These structures were converted into 3D objects using the default conversion 



J. Curr. Chem. Pharm. Sc.: 2(3), 2012 163

procedure implemented in the CS Chem3D Ultra. The generated 3D-structures of the compounds were 
subjected to energy minimization in the MOPAC module, using the AM1 procedure for closed shell systems, 
implemented in the CS Chem3D Ultra. This will ensure a well defined conformer relationship across the 
series under investigation. Also, the compounds attain a common level of minimum energy; a condition 
suitable for interaction with receptor site(s). All these energy minimized structures of individual compounds 
have been ported to DRAGON software33 for computing the descriptors corresponding to 0D-, 1D- and 2D-
classes. Table 2 provides the definition and scope of these descriptor-classes in addressing the structural 
features which were employed in present work. The combinatorial protocol in multiple linear regression 
(CP-MLR) computational procedure34 has been used in developing QSAR models. Prior to the application of 
the CP-MLR procedure, all those descriptors which are inter-correlated beyond 0.90 and showing a 
correlation of less than 0.1 with the biological endpoints (descriptor vs. activity, r < 0.1) were excluded. The 
remaining descriptors, able to address the biological activity of the compounds, have been retained in the 
descriptor’s pool at the end of this initial stage.  

Model development 

The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR 
studies34. Its procedural aspects and implementation are discussed in some of our recent publications35-40. 
The thrust of this procedure is in its embedded ‘filters’. They are briefly as follows: filter-1 seeds the 
variables by way of limiting inter-parameter correlations to predefined level (upper limit ≤ 0.79); filter-2 
controls the variables entry to a regression equation through t-values of coefficients (threshold value ≥ 2.0); 
filter-3 provides comparability of equations with different number of variables in terms of square root of 
adjusted multiple correlation coefficient of regression equation, r-bar; filter-4 estimates the consistency of 
the equation in terms of cross-validated Q2 with leave-one-out (LOO) cross-validation as default option 
(threshold value 0.3 ≤ Q2 ≤ 1.0). All these filters make the variable selection process efficient and lead to a 
unique solution. In order to collect the descriptors with higher information content and explanatory power, 
the threshold of filter-3 was successively incremented with increasing number of descriptors (per equation) 
by considering the r-bar value of the preceding optimum model as the new threshold for next generation. 
Furthermore, in order to ascertain any chance correlations associated with the models recognized in CP-
MLR, each cross-validated model has been put to a randomization test41,42 by repeated randomization of the 
activity profiles to discover the chance correlations, if any, associated with them. For this, every model has 
been subjected to 100 simulation runs with scrambled activity. The scrambled activity models with 
regression statistics better than or equal to that of the original activity model have been counted, to express 
the percent chance correlation of the model under scrutiny. 

Applicability domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model 
is valid only within its training domain and new compounds must be assessed as belonging to the domain 
before the model is applied. The applicability domain is assessed by the leverage values for each 
compound43,44. The Williams plot (the plot of standardized residuals versus leverage values, h) can then be 
used for an immediate and simple graphical detection of both the response outliers (Y outliers) and 
structurally influential chemicals (X outliers) in the model. In this plot, the applicability domain is 
established inside a squared area within ± x × (standard deviations) and a leverage threshold h*. The 
threshold h* is generally fixed at 3(k + 1)/n (n is the number of training-set compounds and k is the number 
of model parameters) whereas x = 2 to 3. Prediction must be considered unreliable for compounds with a 
high leverage value (h > h*). On the other hand, when the leverage value of a compound is lower than the 
threshold value, the probability of accordance between predicted and observed values is as high as that for 
the training-set compounds. 
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RESULTS AND DISCUSSION 

A total number of 417 descriptors, belonging to 0D- to 2D-classes of DRAGON, have been 
computed for 56 compounds of Table 1 to quantify their MMP-2 and MMP-13 inhibition activities. A test-
set has been selected through SYSTAT and the same was used for external validation of the models, derived 
from the training-set compounds. Fourteen compounds (S. Nos. 5, 16, 18, 19, 20, 27, 28, 33, 37, 39, 48, 51, 
55 and 56, Table 1) have been identified for the test-set while remaining compounds constitute the training-
set for MMP-2 and MMP-13 activities. Next, the descriptors which were inter-correlated above 0.90 and 
exhibited correlation less than 0.1 with biological activities have been eliminated in the initial stage. The 
remaining 108 and 109 descriptors able to address, respectively, the MMP-2 and the MMP-13 inhibition 
activities of the compounds have been collated in the separate pools for CP-MLR analyses. A number of 
models in two-, three-, four-, five- and six-descriptors have been derived in succession. In doing so, filter-3 
was in turn incremented with increasing number of descriptors (per equation) by considering the r-bar value 
of the preceding optimum model as the new threshold for next generation.  

In order to quantify MMP-2 inhibition activity in terms of molecular descriptors, compounds 8, 14 
and 53 (Table 1), due to their uncertain activity values, have been eliminated from the data-set. The training-
set was then employed to explore predictive models through CP-MLR. This resulted into 55 models in two-
descriptors, 33 models in three-descriptors, 19 models in four-descriptors and 2 models in five-descriptors. 
However, models in five-descriptors only remained statistically more sensible and the same, in increasing 
level of significance, are given through Equations (1)-(2). 

-logIC50 (MMP-2) = 5.586 –1.341 (0.226) BELm7 –1.197 (0.275) JGI4 + 1.359 (0.338) MATS4e  

  +1.405 (0.309) GATS8v + 1.336 (0.277) C-028 

n = 39, r = 0.913, s = 0.437, F = 33.980, Q2
LOO = 0.765, Q2

L5O = 0.738, r2
Test  = 0.602  …(1) 

-logIC50 (MMP-2) = 5.701 + 2.697 (0.552) SEigp –1.973 (0.227) BELm7 – 1.392 (0.344) JGI3  

  +1.246 (0.308) GATS8v + 1.628 (0.272) C-028 

n = 39, r = 0.916, s = 0.430, F = 34.213, Q2
LOO = 0.769, Q2

L5O = 0.789, r2
Test = 0.578  …(2) 

The parameters n and F represent respectively the number of data points and the F-ratio between the 
variances of calculated and observed activities. The data within the parentheses are the standard errors of 
regression coefficients. In all above equations, the F-values remained significant at 99% level [F5,33(0.01) = 
3.630]. The indices Q2

LOO and Q2
L5O (> 0.5) have accounted for internal robustness of these models while the 

index r2
Test greater than 0.5 specified that the selected test-set is accountable for external validation of above 

models. The descriptors, in all above models, have been scaled45 between 0 and 1 so that they would have 
equal potential to influence the QSAR models and none of them dominate simply because it has larger or 
smaller pre-scaled values compare to the other descriptors. The signs of the regression coefficients have 
indicated the direction of influence of explanatory variables in above models. The positive regression 
coefficient associated to a descriptor will augment the activity profile of a compound while the negative 
coefficient will cause detrimental effect to it. In fact, a total number of 2 models, sharing 7 descriptors 
among them, have been obtained through CP-MLR. The shared 7 descriptors along with their class, brief 
description, average regression coefficients and total incidences are given in Table 3.  

The descriptor SEigp, from the topological class, represents the eigenvalue sum from polarizability 
weighted distance matrix. The descriptor BELm7, from the BCUT class, is the lowest eigenvalue n. 7 of 
Burden matrix/ weighted by atomic masses. The descriptors, MATS4e and GATS8v are from the class of 
2D autocorrelations. The MATS4e is the Moran autocorrelations of lag 4, weighted by atomic Sanderson 
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electronegativities while the descriptor GATS8v represents the Geary autocorrelation-lag 8/ weighted by 
atomic van der Waals volumes. The descriptors JGI3 and JGI4, from the Galvez class, are the mean 
topological charge indices of order 3 and order 4 respectively, the descriptor, C-028, from the atom-centred 
fragments class, corresponds to the functionality, R--CR--X. 

The descriptors, BELm7 (Eqs. 1 and 2), JGI3 (Eq. 2) and JGI4 (Eq. 1) have negative impact on the 
MMP-2 inhibition activity. Therefore, the lower or more negative values of these descriptors are desirable to 
improve the activity of a compound. On the other hand, the descriptors, SEigp (Eq. 2), MATS4e (Eq. 1), 
GATS8v (Eqs. 1 and 2) and C-028 (Eq. 1) have shown positive influence on activity. The higher positive 
values of these descriptors would, therefore, enhance the activity.  

Equations (1)-(2) emerged as significant predictive models and could estimate up to 83.90 percent of 
variance in observed activity of the compounds. These two models have been used to calculate the MMP-2 
inhibition activity profiles of all the compounds and are included in Table 1 for the sake of comparison with 
observed ones. A close agreement between them has been observed. Moreover, the graphical display 
showing the variation of observed versus calculated activities is given in Fig. 2 to depict the goodness of fit 
for individual models. 

The preliminary assessment of complete data-set for MMP-13 inhibition activity suggested that 
compound 24 and 32 (Table 1) could not fit into the trend followed by other compounds of the series. Both 
these analogues were, therefore, treated as the ‘outliers’. However no appropriate reason is apparent, at 
present, for their unusual behavior. Considering 109 descriptors and the test-set, mentioned previously, the 
CP-MLR resulted into 5 models in three-descriptors, 6 models in four-descriptors, 7 models in five-
descriptors and 2 models in six-descriptors from the training-set compounds. The six-descriptors models are 
given through Equations (3)-(4) 

-logIC50 (MMP-13) = 9.236 –0.605(0.175) SIC3 –0.561(0.167) JGI4 –1.214(0.174) MATS8v  

  -1.040(0.195) nCs –0.663(0.203) nCt + 0.480(0.170) C-026 

n = 40, r = 0.894, s  =  0.270, F = 21.987, Q2
LOO = 0.710, Q2

L5O = 0.720, r2
Test = 0.742 …(3) 

-logIC50 (MMP-13) = 7.426 + 0.765(0.171) HNar –0.732(0.164) SIC3 +0.534(0.168) MATS4m  

  +1.136(0.193) MATS6m –1.051(0.173) MATS8v + 0.680(0.168) C-026 

n = 40, r = 0.903, s  =  0.260, F = 24.230, Q2
LOO = 0.739, Q2

L5O = 0.705, r2
Test = 0.616 …(4) 

In fact, the derived five-descriptor and six-descriptor models have shared a total number of 9 
descriptors and the same are listed in Table 3.  

The descriptors HNar and SIC3 (from the topological class) represent, the Narumi harmonic index 
and the structural information content (neighborhood symmetry of 3-order) respectively. The descriptor 
JGI4 (from the GLVZ class) is the mean topological charge index of order 4. The MATS4m, MATS6m and 
MATS8v (from the 2DAUTO class) are the representative of Moran autocorrelations, respectively, of lag 4 
and lag 6/ weighted by atomic masses each and of lag 8/ weighted by atomic van der Waals volumes. The 
nCs and nCt (from the functional class) account, respectively for the number of total secondary and tertiary 
C (sp3) atoms. Finally the descriptor, C-026 (from the atom-centred fragments class) accounts for 
functionality R--CX--R. 

From Equations (3) and (4), it appeared that the descriptors, HNar, MATS4m, MATS6m, and C-026 
have imparted positive impact on MMP-13 inhibition activity, suggesting that their higher values would be 
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advantageous in improving the activity. On the other hand, the descriptors, SIC3, JGI4, MATS8v, nCs and 
nCt have contributed negatively to the activity. Therefore, the lower or more negative values of these 
descriptors would be beneficial.  

These two models (Eqs. 3 and 4) have accounted, respectively, for 79.92 and 81.54 percent of 
variances in the observed activity and have been used to calculate the MMP-13 inhibition activity profiles of 
all the compounds (Table 1). A close agreement between observed and calculated values has been observed. 
For identification of the goodness of fit, a plot between observed and calculated activities is given in Fig. 2. 

The descriptors participated in individual models (Eqs. 1-4) have been found poorly intercorrelated. 
The intercorrelation matrices, amongst descriptors appeared in the individual models, have been avoided for 
the sake of brevity.   

Further, the PLS analyses has also been carried out on 7 and 9 descriptors identified through CP-
MLR for MMP-2 and MMP-13 inhibition activities respectively and results are given in Table 4. For this 
purpose, the descriptors have been autoscaled (zero mean and unit s.d.) to give each one of them equal 
weight in the analysis. In the PLS cross‐validation, two components have been found to be the optimum for 
each of these 7 and 9 descriptors and they explained, respectively, 84.82% and 81.36% of variance in the 
said activities. The PLS equations of two optimum components and MLR‐like PLS coefficients of identified 
descriptors for MMP-2 and MMP-13 activities are given in Table 4. The calculated activity values of 
training- and test-set compounds remained in close agreement to that of the observed ones and are listed in 
Table 1. For comparison, the plot between observed and calculated activities (through PLS analysis) for the 
training- and test-set compounds is given in Fig. 2. Fig. 3 shows a plot of the fraction contribution of 
normalized regression coefficients of these descriptors to the activity (Table 4). In the decreasing level of 
significance, 7 descriptors, being the part of Equations (1) and (2), have been arranged as BELm7, C-028, 
JGI4, GATS8v, MATS4e, SEigp and JGI3 for MMP-2 activity while 9 descriptors, shared Equations (3) and 
(4), have been arranged as MATS8v, SIC3, MATS6m, C-026, nCs, JGI4, MATS4m, nCt and HNar for 
MMP-13 activity. Similar conclusions have been observed from the PLS models for these two activities. The 
descriptors SEigp, MATS4e, GATS8v and C-028 have positive contribution to MMP-2 activity and the 
descriptors BELm7, JGI3 and JGI4 have negative contribution to it. Similarly, the descriptors HNar, 
MATS4m, MATS6m and C-026 have positively contributed to MMP-13 activity while the descriptors SIC3, 
JGI4, MATS8v, nCs and nCt have negatively contributed to it. The descriptors, in a given significant model, 
having positive contribution will augment the activity and their higher values are desirable to further 
improve it. On the other hand, the descriptors having negative contribution will diminish the activity. The 
lower or more negative values of such descriptors may, therefore, enhance the activity of a compound. It has 
also been observed that PLS model from the dataset devoid of 7 descriptors for MMP-2 activity and 9 
descriptors for MMP-13 activity remained inferior in explaining the activity of the analogues. 

The applicability domain (AD) has been analyzed for the models based on whole data set. It is 
characterized by the Williams plot of standardized residuals versus legerage (hi) values. For this purpose, the 
most significant models for the MMP-2 and MMP-13 activities (Table 5) have been considered to calculate 
the standardized residuals and leverage values. The limits of normal values for the standardized residuals 
(response or Y outliers) were set as ± 2.5 × (standard deviation) while leverage threshold as h*. The 
graphical representations for the models, related to MMP-2 and MMP-13 activities, delineating the training-
set and the test-set compounds is given in Fig. 4. As expected, compound 24 and 32 (Table 1) have been 
identified as the Y outliers through Equations (3) and (4). The standardized residuals of these two congeners 
were larger than the acceptable confines. Similarly compounds 45 (for MMP-2 activity) and 3, 10 and 53 
(for MMP-13 activity) have been predicted as the X outliers or the structurally influential analogues of the 
series as their leverage values, revealed by model Equations (2) and (3), remained greater than the threshold 
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estimate. For both the training- and test-set compounds, the suggested models for MMP-2 and MMP-13 
activity match the high quality parameters with good fitting power and the capability of assessing external 
data. Furthermore, all of the compounds were within the AD of these two models and were evaluated 
correctly.  

Table 1: Observed and modeled MMP-2 and MMP-13 inhibition activities in a class of selective          
α-sulfone hydroxamatesa 

-logIC50 (M) 

MMP-2 MMP-13 S. 
No. X R 

Obsd.b Cald. 
Eq. (1)

Cald. 
Eq. (2) PLS Obsd.b Cald. 

Eq. (4) 
Cald. 

Eq. (5) PLS

1 O Allyl(methyl)amino 5.54 5.53 5.53 5.54 7.46 7.62 7.33 7.58

2 O Methyl(prop-2-ynyl) 
amino 

5.68 5.64 5.68 5.65 7.61 7.79 7.67 7.87

3 N-cPr Benzyl(methyl) amino 5.46 5.51 5.81 5.57 7.70 7.66 8.02 7.83

4 O 3,4-Dihydroisoquinolin-
2(1H)-yl 

5.68 5.78 6.44 5.87 8.05 8.04 8.18 8.10

5c O 6,7-Dimethoxy-3,4-
dihydroisoquinolin- 

2(1H)-yl 

5.62 4.69 5.63 4.67 8.21 8.02 8.15 7.95

6 O 3,5-Dimethylpiperidin-
1-yl 

5.14 5.55 5.45 5.42 8.36 7.94 7.84 7.94

7 N-CH2CH2 

OMe 
3,5-dimethylpiperidin-

1-yl 
5.77 5.51 5.62 5.40 7.30 7.43 7.34 7.39

8 O cis-2,6-
Dimethylmorpholin-      

4-yl 

< 5.00d 5.14 5.08 5.04 7.74 7.81 7.66 7.76

9 O 4-Acetylpiperazin-1-yl 5.60 5.10 5.12 5.13 7.30 7.86 7.65 7.78
10 O 4-Isopropylpiperazin-     

1-yl 
5.26 5.72 5.47 5.65 7.55 7.35 7.74 7.54

11 O 4-(2-Methoxyethyl) 
piperazin-1-yl 

5.15 5.59 5.38 5.59 7.35 7.18 7.14 7.14

12 O 4-Phenethylpiperazin- 
1-yl 

6.05 6.25 6.51 6.39 7.60 7.69 7.99 7.80

13 O 4-(2-Hydroxyethyl) 
piperazin-1-yl 

5.22 5.71 5.58 5.68 7.40 7.40 7.65 7.54

14 O 4-(2-(Dimethylamino) 
ethyl)piperazin-1-yl 

< 5.00d 5.30 5.39 5.35 7.05 7.15 7.14 7.10

15 O 4-(2-Fluorophenyl) 
piperazin-1-yl 

5.85 5.80 5.65 5.75 8.17 7.81 8.00 7.87

16c O 4-(2-Methoxyphenyl) 
piperazin-1-yl 

5.35 5.67 5.73 5.72 7.74 7.60 7.54 7.49

Cont… 
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-logIC50 (M) 

MMP-2 MMP-13 S. 
No. X R 

Obsd.b Cald. 
Eq. (1)

Cald. 
Eq. (2) PLS Obsd.b Cald. 

Eq. (4) 
Cald. 

Eq. (5) PLS

17 O 4-(4-Fluorophenyl) 
piperazin-1-yl 

5.80 6.01 6.11 6.06 8.22 8.05 8.33 8.17

18c O 4-(4-Acetylphenyl) 
piperazin-1-yl 

6.15 6.73 6.73 6.73 8.17 8.34 8.16 8.28

19c O 4-(2,4-Dimethylphenyl) 
piperazin-1-yl 

5.25 6.17 6.28 6.11 7.91 7.83 7.92 7.88

20c O 4-(Pyridin-2-
yl)piperazin-1-yl 

5.44 5.54 5.54 5.73 7.97 7.74 7.68 7.70

21 O 4-(Pyrimidin-2-yl) 
piperazin-1-yl 

5.80 5.32 5.42 5.54 8.19 7.85 7.84 7.83

22 O 4-(Pyridin-4-yl) 
piperazin-1-yl 

5.76 6.63 6.50 6.68 7.52 7.94 7.98 7.96

23 O 4-(Pyrazin-2-
yl)piperazin-1-yl 

6.05 5.54 5.41 5.68 7.57 7.75 7.75 7.75

24 O 4-(2,3-Dimethylphenyl) 
piperazin-1-yl 

5.22 5.21 5.46 5.20 8.40e -- -- -- 

25 N-cPr 4-(2,3-Dimethylphenyl) 
piperazin-1-yl 

5.20 5.32 5.80 5.32 7.56 7.53 7.38 7.34

26 N-CH2CH2 

OMe 
4-(2,3-Dimethylphenyl) 

piperazin-1-yl 
6.40 5.29 5.64 5.27 7.15 6.86 6.86 6.78

27c N-CH2CH2 

OMe 
Aniline amide 6.40 5.86 6.46 5.97 8.05 7.72 7.51 7.55

  Y R1         

28c O N H 7.63 8.61 8.76 8.74 8.77 8.70 8.56 8.60

29 O N 2-F 7.68 7.72 7.83 7.71 8.57 8.40 8.47 8.42

30 O N 2-Me 7.06 7.00 6.75 6.90 8.11 8.14 8.12 8.14

31 O N 2-Cl 7.40 7.57 8.09 7.71 8.05 8.20 8.25 8.20

32 O N 2-OMe 6.43 6.31 6.24 6.29 6.89e -- -- -- 

33c O N 3-OMe 7.31 7.28 7.12 7.17 8.10 8.49 8.20 8.29

34 O N 3-CF3 6.48 6.90 6.84 6.82 7.70 7.77 7.93 7.94

35 O N 4-OMe 7.74 7.70 7.71 7.67 9.20 9.27 9.16 9.20

36 O N 4-Me 7.46 7.66 7.52 7.61 8.72 8.73 8.37 8.54

37c O N 2,4-diMe 5.85 7.07 6.89 6.89 7.54 8.31 8.35 8.35

38 N-cPr N H 8.27 7.54 7.40 7.53 8.48 8.72 8.50 8.52

39c N-cPr N 4-CF3 7.49 6.91 6.13 6.64 8.62 8.77 8.87 8.89

Cont… 
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-logIC50 (M) 

MMP-2 MMP-13 S. 
No. X R 

Obsd.b Cald. 
Eq. (1)

Cald. 
Eq. (2) PLS Obsd.b Cald. 

Eq. (4) 
Cald. 

Eq. (5) PLS

  Y R1         

40 O CH H 8.36 7.99 7.90 8.12 8.22 8.21 8.01 8.13
41 O CH 2-OMe 5.43 5.68 5.46 5.70 7.76 7.58 7.47 7.50
42 O CH 4-Cl 8.70 7.91 8.37 8.09 9.15 8.69 8.87 8.86
43 O CH 2-Cl 7.09 6.91 7.24 7.08 7.37 7.81 7.75 7.79
44 O CH 2-Me 6.15 6.50 5.95 6.39 7.49 7.84 7.80 7.85

45 O CH 2-CF3 6.05 6.29 5.80 6.00 7.54 7.46 7.53 7.57
46 O CH 2-OEt 5.51 6.08 5.79 6.10 7.46 7.58 7.25 7.36
47 O CH 2-OH 7.15 7.15 7.20 7.21 7.95 8.01 8.04 8.05

48c O CH 2-(4-F-C6H4) 5.27 6.28 6.00 6.26 7.47 8.01 8.08 8.02
49 O CH 2,3-(CH=CH) 

(naphthyl) 
6.30 6.42 6.07 6.34 7.94 7.44 7.70 7.56

50 O CH 2-Me,4-OMe 6.30 6.37 6.15 6.19 8.15 8.18 8.11 8.16
51c O CH 2,4-diOMe 5.76 5.71 5.46 5.57 7.96 7.89 7.67 7.69
52 O CH 2,5-diOMe 6.10 5.48 5.83 5.46 7.94 8.10 7.88 7.89
53 O CH 2-OMe,5-iPr < 5.00d 5.95 6.13 5.89 7.15 7.35 7.28 7.24
54 O N 4-CF3 7.92 8.04 7.48 7.88 9.22 8.83 9.00 9.05
55c O N 4-Cl 8.43 8.53 9.22 8.70 9.00 9.21 9.53 9.40
56c N-cPr N 4-OMe 8.28 7.48 7.73 7.46 9.38 9.14 8.96 8.96

aFor general structures, Fig. 1(A) for compounds 1-27 and Fig. 1(B) for compounds 28-56,                                             
bIC50 represents the concentration of a compound required to bring out 50% inhibition of MMP-2/MMP-13, 
ccompounds in test-set, deliminated compound due to uncertain activity, e“ outlier” compound in present study 

Table 2: Descriptor classes used for the analysis of MMP-2 and MMP-13 inhibition activity of the 
compounds  

Descriptor class (acronyms) Definition and scope 

Constitutional                 
(CONST) 

Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations. 

Topological (TOPO) 2D-descriptor from molecular graphs and independent conformations. 

Molecular walk counts           
(MWC) 

2D-descriptors representing self-returning walk counts of different 
lengths. 

Modified Burden eigenvalues 
(BCUT) 

2D-descriptors representing positive and negative eigen values of the 
adjacency matrix, weights the diagonal elements and atoms. 

Galvez topological charge 
indices (GLVZ) 

2D-descriptors representing the first 10 eigen values of corrected 
adjacency matrix. 

Cont… 
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Descriptor class (acronyms) Definition and scope 

2D-autocorrelations         
(2DAUTO) 

Molecular descriptors calculated from the molecular graphs by 
summing the products of atom weights of the terminal atoms of all the 
paths of the considered path length (the lag). 

Functional groups              
(FUNC) 

Molecular descriptors based on the counting of the chemical 
functional groups. 

Atom-centred fragments           
(ACF) 

Molecular descriptors based on the counting of 120 atom-centred 
fragments, as defined by Ghose-Crippen. 

Empirical (EMP) 1D-descriptors represent the counts of non-single bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in 
an H-depleted molecule. 

Properties (PROP) 1D-descriptors representing molecular properties of a molecule. 

Table 3: Identified descriptorsa along with their physical meaning, average regression coefficient and 
incidenceb, in modeling the MMP-2 and MMP-13 inhibition activities 

Average regression 
coefficient (incidence) S. 

No. Descriptor Descriptor 
class Physical meaning 

MMP-2 MMP-13 

1 HNar TOPO Narumi harmonic index.  0.765 (1) 

2 SIC3 TOPO Structural information content (neighborhood 
symmetry of 3-order). 

 -0.669 (2) 

3 SEigp TOPO Eigenvalue sum from polarizability weighted 
distance matrix. 

2.697 (1)  

4 BELm7 BCUT Lowest eigenvalue n. 7 of Burden matrix/ 
weighted by atomic masses. 

-1.657 (2)  

5 JGI3 GLVZ Mean topological charge index of order 3. -1.392 (1)  

6 JGI4 GLVZ Mean topological charge index of order 4. -1.197 (1) -0.561 (1) 

7 MATS4m 2DAUTO Moran autocorrelation - lag 4/ weighted by 
atomic masses. 

   0.535 (1) 

8 MATS4e 2DAUTO Moran autocorrelation - lag 4/ weighted by 
atomic Sanderson electronegativities. 

1.359 (1)  

9 MATS6m 2DAUTO Moran autocorrelation - lag 6/ weighted by 
atomic masses. 

  1.136 (1) 

10 MATS8v 2DAUTO Moran autocorrelation - lag 8/ weighted by 
atomic van der Waals volumes. 

 -1.133 (2) 

11 GATS8v 2DAUTO Geary autocorrelation - lag 8/ weighted by 
atomic van der Waals volumes. 

1.326 (2)  

12 nCs FUN Number of total secondary C (sp3).  -1.040 (1) 

Cont… 
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Average regression 
coefficient (incidence) S. 

No. Descriptor Descriptor 
class Physical meaning 

MMP-2 MMP-13 

13 nCt FUN Number of total tertiary C (sp3).  -0.663 (1) 

14 C-026 ACF Corresponds to R—CX—R.    0.580 (2) 

15 C-028 ACF Corresponds to R—CR—X. 1.482 (2)  

aThe descriptors have been identified from the models, emerged from CP-MLR protocol with a training-set of 
39 and 40 compounds for MMP-2 and MMP-13 inhibition activities respectively. bThe average regression 
coefficient of the descriptor corresponding to all models and the total number of its incidence. The arithmetic 
sign of the coefficient represents the actual sign of the regression coefficient in the models 

Table 4: PLS and MLR-like PLS models from the descriptors of five and six parameter CP-MLR 
models for MMP-2 and MMP-13 inhibition activities 

A: PLS equation 

PLS coefficient (s.e.)a 
PLS components 

MMP-2 MMP-13 

Component-1 -0.724 (0.052) -0.214 (0.020) 

Component-2 -0.155 (0.053) 0.211 (0.032) 

Constant 6.313 7.876 

 

B: MLR-like PLS equation 

MMP-2 MMP-13 
S.  

No. Descriptor 
MLR-like 

coefficient (f. c.)b Order 

S.  
No. Descriptor 

MLR-like 
coefficient (f. c.)b 

Order 

1 Seigp 0.115 (0.062) 6 1 Hnar 0.107 (0.050) 9 

2 BELm7 -0.502 (-0.270) 1 2 SIC3 -0.287 (-0.134) 2 

3 JGI3 -0.075 (-0.040) 7 3 JGI4 -0.173 (-0.081) 6 

4 JGI4 -0.320 (-0.172) 3 4 MATS4m 0.162 (0.076) 7 

5 MATS4e 0.197 (0.106) 5 5  MATS6m 0.267 (0.125) 3 

6 GATS8v 0.310 (0.166) 4 6  MATS8v -0.538 (-0.251) 1 

7 C-028 0.343 (0.184) 2 7  nCs -0.216 (-0.101) 5 

 Constant 21.001  8  nCt -0.140 (-0.065) 8 

 9  C-026 0.253 (0.118) 4 

  Constant 8.344  

Cont… 
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C: PLS regression statistics 

Value 
Symbol 

MMP-2 MMP-13 

n 39 40 

r 0.921 0.902 

s 0.339 0.246 

F 100.555 80.879 

Q2
LOO 0.824 0.785 

Q2
L5O 0.816 0.785 

r2
Test 0.588 0.600 

 

aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms 
of descriptors for their original values; f.c. is fraction contribution of regression coefficient, computed from 
the normalized regression coefficients obtained from the autoscaled (zero mean and unit s.d.) data 

Table 5: Models derived for the whole data set (n = 53) for the MMP-2 and (n = 56) for the MMP-13 
inhibition activities 

Model  r s F Q2
LOO Q2

L5O Eq. 

-logIC50 (MMP-2) = 5.551 - 1.302 (0.244) BELm7 

- 0.957 (0.265) JGI4 + 1.127 (0.352) MATS4e  

+ 1.561 (0.301) GATS8v + 1.170 (0.276) C-028 

0.879 0.516 32.015 0.710 0.703 1(a) 

-logIC50 (MMP-2) = 5.900 + 1.818 (0.570) SEigp  

- 1.772 (0.237) BELm7 - 1.395 (0.348) JGI3  

+ 1.407 (0.300) GATS8v + 1.408 (0.268) C-028 

0.881 0.512 32.658 0.709 0.721 2(a) 

-logIC50 (MMP-13)  = 9.091 - 0.579 (0.193) SIC3  

- 0.427 (0.173) JGI4 -1.104 (0.182) MATS8v  

- 0.980 (0.231) nCs-0.669 (0.255) nCt  

+ 0.401 (0.167) C-026 

0.824 0.347 17.314 0.593 0.567 3(a) 

-logIC50 (MMP-13)  = 7.582 + 0.790 (0.213) HNar  

-0.690 (0.192) SIC3 + 0.425 (0.195) MATS4m   

+ 0.837 (0.216) MATS6m - 0.955 (0.190) MATS8v 

+ 0.585 (0.176) C-026 

0.819 0.352 16.615 0.568 0.566 4(a) 
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Fig. 1 (A) and 1 (B): General structures for the compounds in Table 1 

    

    

    
Fig. 2: Plot of observed versus caculated -logIC50 values relating to the inhibition of MMP-2 and 

MMP-13 for training-set and test-set compounds 
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Fig. 3: Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 7 and 9 
identified descriptors (Table 4) associated, resepectively, with MMP-2 and                                        

MMP-13 inhibition activities of the compounds 
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Fig. 4: Williams plot for the MMP-2 and MMP-13 inhibition activities of training-set and test-set 

compounds (Table 1). The horizontal dotted line refers to the residual limit ± 2.5 ×                             
(standard deviation) and the vertical dotted line represents threshold leverage,                                   

h* (= 0.283 and 0.321 for inhibition of MMP-2 and MMP-13 respectively) 

CONCLUSION 

The MMP-2 and MMP-13 inhibition activity of selective α-sulfone hydroxamates have been 
quantitatively analyzed in terms of chemometric descriptors. The statistically validated quantitative 
structure-activity relationship (QSAR) models provided rationales to explain the inhibition activities of these 
congeners. For MMP-2 inhibition activity, the descriptors identified through combinatorial protocol in 
multiple linear regression (CP-MLR) analysis have highlighted the role of the eigenvalue sum from 
polarizability weighted distance matrix (SEigp), the lowest eigenvalue n. 7 of Burden matrix/ weighted by 
atomic masses (BELm7), the Moran autocorrelation-lag 4/ weighted by atomic Sanderson electronegativities 
(MATS4e), the Geary autocorrelation-lag 8/ weighted by atomic van der Waals volumes (GATS8v), the 
mean topological charge indices of order 3 (JGI3) and order 4 (JGI4), and the functionality, R--CR--X (C-
028). For MMP-13 activity, the Narumi harmonic index (HNar), the structural information content of 
neighborhood symmetry of 3-order (SIC3), the mean topological charge index of order 4 (JGI4), the Moran 
autocorrelations of lag 4 and 6/ weighted by atomic masses each (MATS4m and MATS6m)  and of lag 8/ 
weighted by atomic van der Waals volumes (MATS8v), the number of total secondary C (sp3) (nCs), the 
number of total tertiary C (sp3) (nCt), and the functionality R--CX--R (C-026) remained the significant 
contributors. Such guidelines may be helpful in exploring more potential analogues of the series. The 
statistics emerged from the test-set have validated the identified significant models. PLS analysis has further 
confirmed the dominance of the CP‐MLR identified descriptors. Applicability domain analysis revealed that 
the suggested models have acceptable predictability. Except a few structurally influential analogues, all the 
compounds are within the applicability domain of the proposed models and were evaluated correctly. 
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