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In the present investigation the B1-B2 structural phase transition and elastic
properties of BaSe and CeSe has been predicted using the simple potential
model considered third nearest neighbor interaction. The calculated values
of B1-B2 phase transition pressure, equation of state (Compression curve),
bulk modulus, its first order pressure derivative and second order elastic
constants are given along with the available experimental and other
theoretical values. The results achieved in the present study are found in
good agreement with the available experimental data.
 2014 Trade Science Inc. - INDIA

INTRODUCTION

At ambient pressure and temperature, BaSe and
CeSe exhibit NaCl-type structure, however with the
application of pressure they undergo first order phase
transition from the sixfold-coordinated NaCl-type (B1
structure) to the eightfold-coordinated CsCl-type (B2
structure). The high pressure X-ray diffraction studies
suggest the B1-B2 phase transition pressure of 6.0 and
20.0 GPa for BaSe and CeSe, respectively[1,2].

In the past years, many efforts were made to inter-
pret the experimental results[1-4] regarding phase transi-
tion, elastic and cohesive properties in the BaSe and
CeSe using a variety of theoretical models[5-15]. Most
of these approaches used different methods of band
structure calculations, such as scalar relativistic full po-

tential-linearized augmented plane wave (FP-LAPW)
approach within the framework of density functional
theory[5], self- consistent linearized augmented plane
wave (LAPW)[6], tight-binding linear muffin-tin orbitals
(TB-LMTO)[7], linear muffin-tin orbitals (LMTO)[8],
augmented-spherical wave method within the local-den-
sity approximation (LDA-ASW)[9], full-potential aug-
mented plane wave plus local orbital (FP-APW + lo)
method[10,11], self-interaction corrected local spin-den-
sity (SIC-LSD) approximation[12], as well as the po-
tential model[13-15]. However, some of these theories
predict the transition pressure, compression curve and
cohesive properties, close to the experimental findings.
But these calculations require rigorous computational
work.

In view of above facts, the aim of the present study
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is to formulate the simple and straightforward potential
model to determine the B1-B2 phase transition pres-
sure, the equation of state (compression curve), the elas-
tic and cohesive properties of BaSe and CeSe.

METHOD OF ANALYSIS

The Gibbs free energy is defined as:
TSPVUG  (1)

Here U is the lattice energy and V and S are respec-
tively, the volume and vibrational entropy at pressure P,
and temperature T. Considering that the entropy (S)
has a constant value at room temperature (T), for both
the phases, the Gibbs free energy for B1 and B2 phases
may be given as follows[16,17]:
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Lattice energy, which includes long range Coulomb
interaction and short range repulsive energy up to third
nearest neighbor makes the cohesive energies, for B1
and B2 phases as follows[16,17]:
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Here, r and r1, are the nearest-neighbor separations;

M and 1
M  are the Modelung constants; 1B  and 2B

are the range parameters; 1Bb  and 2Bb  are the strength

parameters in B1 and B2 phases, respectively. At dif-
ferent pressure, to determine the value of Gibbs free
energy for B1 and B2 phases, r(r1) is calculated by

minimizing the Gibbs free energy at that pressure and
the phase transition pressure is the pressure at which
the difference of Gibbs free energy for two phases i.e.
dG (= G

B2
-G

B1
) becomes zero. This requires the de-

termination of range and strength parameter in B1 and
B2 phases. For B1 phase, the range and the strength
parameter may be determined from the thermodynamic
condition of bulk modulus i.e.
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and
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As the strength parameter determines the strength
of the potential and at the phase transition the coordi-
nation number (number of the nearest neighbors) in-
creases from 6 to 8 so it is obvious that the value of
strength parameter will also increase for B2 phase. For
B2 phase the strength parameter may be given as[18,19]

1B2B b
6
8

b   (8)

While the range parameter is a measure of the range
of the potential so its value for B2 phase decreases as
at the B1-B2 phase transition the nearest neighbor dis-
tance increases. The value of range parameter for B2
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phase )( 2B may be calculated from the minima of the

Gibbs free energy whereas the interionic separation (r1)
can be calculated with the help of volume collapse at
the phase transition pressure[19].

The bulk modulus and the pressure derivative of
the bulk modulus for B1 and B2 phases are calculated
by fitting P-V data to the Vinet equation of state[20],
given as:
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and then applying the method of least square fit.
Further to calculate the elastic constants (C

11
, C

12
,

C
44

) for B1 phase, we have partition them into the con-
tributions from Coulombic and short range forces i.e.
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ijij CCC  (10)

The Coulombic contribution in the elastic constants
may be given as[19,21]
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The short-range (SR) contributions considered up
to third nearest neighbor interactions are:
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RESULTS AND CONCLUSION

The input data along with the corresponding refer-
ences and calculated model parameters for BaSe and
CeSe are given in TABLE 1 and 2, respectively. To
study the phase transition properties of BaSe and CeSe,
at first we have calculated the Gibbs free energy for B1
and B2 phase, and found that the calculated values of
the Gibbs free energy at zero pressure (cohesive en-
ergy) in B1 phase is less than that of the B2 phase,
which means B1 phase is thermodynamically and me-
chanically more stable than B2 phase. As the pressure
increases, the difference of Gibbs free energy (dG) for
two phases decreases and at the phase transition pres-
sure it becomes zero. The difference of Gibbs free en-
ergy (dG) with pressure is plotted in Figures 1 and 2
for BaSe and CeSe, respectively. From these figures
the phase transition pressure comes out to be 6.2 GPa
for BaSe and 20.8 GPa for CeSe, which are in excel-
lent agreement with the experimental findings[1,2]. The
phase transition pressure, equilibrium separation for B2
phase, cohesive energies for B1 and B2 phase and rela-
tive volume at transition for B1 and B2 phase are given
in TABLE 3, along with the experimental and other theo-
retical data.

The compression curve is calculated using the val-
ues of nearest neighbor separation r(r1) at different pres-

TABLE 1 : Input parameters

Crystal r0 (A
0) 

B0 
(GPa) 

% Volume collapse at 
transition 

BaSe 
3.2965 

[1] 
40.00 

[4] 
13.9 [1] 

CeSe 
2.9950 

[2] 
76.00 

[2] 
9.0 [2] 
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tion increases, while the next nearest neighbor separa-
tion decreases at B1 to B2 transition. This may be ex-
plained by the mechanism of the B1-B2 transition in
which the increase in pressure causes the unfolding of
the bonding between the ions. At B1-B2 phase transi-
tion the Ba-Se distance increases by 0.155 A0 while
Ce-Se distance increases by 0.174 A0. This increase
can be interpreted as an increase of the cation radius at
B1-B2 phase transition, because the anionic radius can
be taken as independent of the crystal structure[22].
According to the stability criterion of B1 and B2 phase,
the NaCl type structure becomes stable only if the ratio
of cation radius to the anion radius is between 0.41 to

Crystal bB1(10-19J) ñB1(A
0) bB2(10-19J) ñB2(A

0) % Decrease in range parameter for B2 phase 

BaSe 916.4436 0.4840 1221.9248 0.4510 6.82 

CeSe 4940.2330 0.3507 6586.9773 0.3371 3.88 

TABLE 2 : Calculated model parameters.

TABLE 3 : Phase transition and cohesive properties.

Cohesive energy 
Crys. 

Equilibrium sep. for B2 phase 
r0

1 (A0) UB1 

(kJ/Mol) 
UB2 

(kJ/Mol) 
PT (GPa) 

VT(B1)/ 
V0(B1) 

VT(B2)/ 
V0(B2) 

BaSe       

Prese. 3.43324 -2530.61 -2491.03 6.20 0.886 0.787 

Exp.    6.00 [1]   

Other 3.35498 [10]   6.02 [10] 0.880 [10] 0.759 [10] 

 5.50099 [5]   6.80 [5] 0.901 [5] 0.785 [5] 

 3.37100 [7]   5.20 [7] 0.880 [7] 0.762 [7] 

 5.37456 [6]   5.60 [6] 0.890 [6] 0.760 [6] 

CeSe       

Prese. 3.15449 -2868.21 -2779.02 20.8 0.834 0.854 

Exp.    20.0 [2]   

Other 3.14021 [15] -2268.92 [15] -2204.40 [15] 18.6 [15] 0.820 [11] 0.822 [11] 

 3.14021 [11]   22.0 [11]   

Figure 1 : The variation of the difference for Gibbs free
energies (dG) in B1 and B2 phase with pressure for BaSe.

Figure 2 : The variation of the difference for Gibbs free
energies (dG) in B1 and B2 phase with pressure for CeSe.

sure for BaSe and CeSe, and are plotted in the Figures
3 and 4, respectively. The experimental points are shown
by filled triangles for the shake of compression. It is
clear from these figures that our calculated results for
compression curve are quite close to the available ex-
perimental data. From these figures it may also be noted
that the B1-B2 phase transition occurs with discontinu-
ity in volume at the phase transition pressure.

Figures 5 and 6 represents the variation of nearest
neighbor distance i.e., Ba-Se (Ce-Se), and next near-
est neighbor distance i.e., Ba-Ba (Ce-Ce), with pres-
sure for BaSe and CeSe, respectively. From these fig-
ures it may be noted that the nearest neighbor separa-
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0.73 and the CsCl type structure becomes stable if the
radius ratio is above 0.73[18,23]. Hence, our results also
support the stability criterion of B1 and B2 phase and
with the increase in cation radius for CsCl type struc-
ture, at the phase transition pressure the radius ratio
crosses the critical value of 0.73 and the CsCl type
structure becomes stable.

Calculated values of bulk modulus B
0
 and the pres-

sure derivative of bulk modulus B
0
1 for B1 and B2 phase

Figure 3 : Compression curve for BaSe. Exp. points are from
ref. [3].

Figure 4 : Compression curve for CeSe. Exp. points are from
ref. [2].

are given in TABLE 4 along with other experimental
and theoretical results. It can be reveal from TABLE 4
that our calculated values [from Vinet equation of state]
of bulk modulus for B1 phase are quite close to the
experimental values and hence verify the suitability of
present potential model for BaSe and CeSe. It can also
be seen from TABLE 4 that our calculated values [from
eqn. (9)] of bulk modulus for B2 phase are greater than
that of the B1 phase. This seems to be correct as the
small lattice parameters generally lead to high bulk
moduli[24] and is also consistent with the experimental
work of H.G. Zimmer et al.[25] supported by their em-
pirical relation for the bulk modulus of B2 phase, given
as B

02
 = B

01
 (V

02
/V

01
) -1.1. Further, to check this result

we have also calculated the bulk modulus for B2 phase
from the thermodynamic condition
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Again, the values calculated from equation (17)
shows that the bulk modulus for B2 phase is greater
than that of the B1 phase for both BaSe and CeSe.

For NaCl phase the calculated values of secondFigure 5 : Variation of interionic distances with pressure
for BaSe.

Figure 6 : Variation of interionic distances with pressure
for CeSe.
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order elastic constants (SOEC) are given in TABLE 5
with available theoretical data. An inspection of TABLE
5 reveals that although the experimental values of the
second order elastic constants for BaSe and CeSe are
not available for the comparison, but the values of the
bulk modulus predicted from these elastic constants by

At last it is pertinent to mention here that to study
the B1-B2 phase transition and elastic properties ab-
inito calculations and some computer simulation pro-
grams like, WIEN2K are extensively being used. But
the aim of the present study is to formulate the simple
and straightforward potential model which determines
the B1-B2 phase transition pressure, the equation of
state (compression curve) and the elastic properties
within the same accuracy as done by such rigorous cal-
culations and computer codes. On the basis of overall
description it may be concluded that the present poten-
tial model and its application in the present study has
satisfactorily explained the structure stability, cohesive,
elastic and phase transition properties of barium and
cerium selenide which also validates the physical sig-
nificance of range and strength parameters.
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 46.80 [6] 48.60 [6]  6.56 [6] 4.84 [6] 

 45.41 [7] 52.90 [7]    

CeSe      

Present 75.44 86.70 90.38 4.77 5.37 

Exp. 76.00 [2]   5.00 [2]  

Other 72.80 [15] 73.93 [11]  4.77 [11] 4.72 [11] 

 74.39 [11]   5.20 [12]  

 83.40 [12]     

TABLE 4 : Bulk modulus and its pressure derivative.

TABLE 5 : Second order elastic constants for B1 phase.

Crystal C11 
(GPa) 

C12 
(GPa) 

C44 
(GPa) 

B01 (GPa) 
from eqn. 

(18) 
BaSe     

Present 45.94 37.02 37.02 39.99 

Exp.    40.00 

Other 
99.34 

[5] 
8.29 [5] 8.38 [5] 38.64 [5] 

 
104.00 

[10] 
14.00 
[10] 

15.00 
[10] 

44.00 [10] 

CeSe     

Present 130.36 48.81 48.81 75.99 

Exp.    76.00 [2] 

Other 
198.93 

[11] 
10.22 
[11] 

93.40 
[11] 

73.12 [11] 

 
154.48 

[15] 
31.97 
[15] 

32.01 
[15] 

72.81 [15] 

using the relation:

 12110 C2C
3
1

B   (18)

are better than those of the previous workers as com-
pared to the experimental values.
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