January 2009

Volume 4 Issue 1

Environmental Science

Trade Science Inc.

🖻 Current Research Papers

ESAIJ, 4(1), 2009 [01-13]

An Indian Journal

Present hydrogeochemistry of the area between El Daba'a and Ras el Hekma, North western coast, Egypt

M.A.Gomaa, G.A.Omar Desert Research Center. Matariya, Cairo, (EGYPT) E-mail : gelaan75@yahoo.com Received: 10th July, 2008 ; Accepted: 15th July, 2008

ABSTRACT

The objective of this paper is to study the present hydrogeochemistry of the area between El Daba'a and Ras El Hekma. Two main water-bearing formations are recognized, the first is the Pleistocene at both El Daba'a and Ras El Hekma areas, while the second is the Miocene aquifer at El Daba'a only. The recharging source is the rainfall. The groundwater flow direction is mainly northward. Fifty groundwater samples were chosen to evaluate aquifers' quality the groundwater varies from fresh to saline, moderately hard to very hard. The groundwater salinity and the concentration of major constituents increase in the same direction of the groundwater flow, particularly in the Miocene groundwater. The main water type is Cl-Na, reflecting the mature phase of groundwater metasomatism. The study of ion ratios as well as the hypothetical salts reflects the impacts of marine sediments rich in Ca and magnesium on groundwater quality. The investigated water is super saturated with carbonate minerals, which cause a scale formation, so it is recommended to be treated before use. © 2009 Trade Science Inc. - INDIA

INTRODUCTION

Now-a-days, great attention is paid by different authorities for the establishment of the new settelments and land reclamation projects, to overcome the over population crisis, which represent the greater challenge to Egypt's future. In this respect, priorities are given to the northwestern coastal zone of Egypt, which is considered a promising strip due to its mild weather easy accessibility as well as the availability of remarkable precipitation. The investigated area lies between El Daba'a and Ras El Hekma (longitudes 27º40' and 28º40'E and latitudes 30º50' and 31º30'N), (Figure 1). It is geographically bounded by Mediterranean Sea due north, the elevated plateau due south, El Alamain area to the east and Mersa Matruh to the west. The study area is characterized by mild climatic condition. Rainfall is considered as the main source of recharge to groundwater aquifer and affects greatly the amounts of water stored in such aquifers. The mediterranean coastal

zone of Egypt receives noticeable amounts of rainfall especially in winter, and the rainfall in the coastal zone is usually restricted to the coastal, but may extend few kilometers inland. The maximum annual rainfall recorded 274.6 mm during 1989 and 1990. The annual mean of rainfall is about 139.2 mm^[14].

Hdrogeomorphology

The area is dominated by mild topography. It is divided into two main geomorphic units; the coastal plain

and the elevated plateau (Figure 2).

The coastal plain occupies the northern narrow strip adjacent to the present mediterranean shore line. It slopes gradually due north and exhibits elevation ranging from the mean sea level up to about +60 m. It displays different morphologic features due to the influence of local physiographic and lithologic conditions. The land forms represented within this plain are the foreshore dunes, which constitute the out standing land feature stretched at several localities (e.g. El Daba'a, Fuka and Baqqush). These dunes cover portion of the near shore ridges (composed mainly from loose oolitic carbonate sands). The foreshore dunes act as a waterbearing at El Daba'a and Baqqush localities. The lithic nature of the binding material accelerates the infiltration of rainwater, forming a fresh groundwater lenses above the main water TABLE.

The coastal plain is dominated by several elongated ridges, which form gentle sweeping curves running subparallel to the present coast. The coastal ridges are mainly composed of oolitic limestone possessing different degrees of hardness as well as indurated surfaces. According to their hydrologic response, the ridges are distinguished into the northern near shore ridges and the southern inland ridges. The former ridges are built up from friable cemented limestone, interbeded by loose carbonate sand lenses. Such ridges are charecterized at Mersa Matruh locality by tidal inlets allowing the direct connection of sea water with the inland depression. The latter ridges are mainly composed of moderately hard to hard oolitic limestone. The outer portion of these ridges is developed into very hard siliceous crust, which minimizes the vertical percolation of rain water into the ridges. Accordingly, these ridges act as water divides, where the surface water seeps towards the low hollows and depressions. The coastal depressions are located between the elevated ridges and constitute the elongated shallow topographic depressions. The surface of these depressions slopes gently northward (almost plate to gently undulated). Such depressions are occupied by the alluvial deposits intermixed with variable amount of carbonate and quartz sands. The depressions are considered as collectors for surface water runoff.

The elevated plateau constitutes a prominent geomorphic unit bounding the coastal plain at its southern side. It rises to about +100 m above the mean sea level

Environmental Science An Indian Journal and regionally slopes northward. Such plateau is built up of fissured limestones. Its top portion is highly weathered and developed into a very hard pink crust. The elevated plateau represents the watershed area in the western coastal zone (Figure 2).

Geology

In the western mediterranean coastal zone, the exposed rocks are entirely of sedimentary origin ranging in age from Tertiary to Quaternary (Figure 3).

Tertiary deposits

Tertiary rocks are represented by Miocene and Pliocene sediments. Generally, the exposed Miocene sediments occupy about 11% of Egyptian land (Figure 3). These sediments exhibit greater facies changes with a large number of conformities, reflecting the nature of the tectonically formed basins in which they were formed. In the investigated area, Miocene deposits are discriminated into two horizons, namely Mamura and Marmarica Formations. The lower one is Mamura Formation (lower

Figure 2: geomorphological map (Modified after Said, 1962)

Figure 3: Geological map (simplified after CONOCO, 1986)

2

Figure 4: Idialized stratigraphic section at El Daba'a area, (After El Shamy,1968)

Miocene), which can be traced along the northern margin of El Qattara Depression. The recorded thickness is about 900 m at El Qattara Depression with a mean thickness of 750 m^[9]. The upper horizon is the Marmarica Formation (Middle Miocene). It has a platform features, and exhibits lateral and vertical facies changes. It is composed of shallow marine limestone (distinguished into upper white fossiliferous limestone member, middle white chalk member and a lower member of alternating cross-bedded carbonates and fossil shale with marls). It is worth mentioning that, the Miocene sediments along the north littoral part of Egypt have a composite thickness of about 400 m.

Pliocene sediments are of limited distribution in the investigated area (Figure 3). Local Pliocene exposures are recognized at some localities as Mersa Matruh^[5], Ras El Hekma^[7] and El Daba'a^[4]. These deposits are composed of white shallow marine limestone, interbedded with marl, grading into pink marly limestone towards El Daba'a in the west. In the subsurface, the Pliocene sediments are dominated by creamy limestone and calcareous sandstone with shale.

Quaternary deposits

The Quaternary deposits are related to Pleistocene and Holocene times. Pleistocene deposits have a wide distribution in the area. These deposits are differentiated into pink and cardium limestones. Pink limestone is exposed at the topmost portion of the northern edge of the elevated plateau, where it overlies Marmarica Formation. On the other hand, cardium limestone exposes locally at El Daba'a, Ras El Hekma and Mersa Matruh localities with a thickness not more than one Current Research Paper

meter (Figure 4).

Holocene deposits are represented by a variety of unconsolidated deposits, differentiated into alluvial, aeolian as well as beach deposits. Alluvial deposits are predominant in the shallow topographic conditions composed of quartz, sands, silt and clay, showing enrichment in carbonate grains due north and rock fragments, pebbles with gravel due south. Aeolian deposits are recognized as the coastal dunes of carbonate nature or as the inland dune composed of quartz sands. Beach deposits occupy a narrow strip along the shore and composed of loose white carbonate sand grains intermixed with few quartz grains as well as fossil remains.

Hydrogeology

Two water-bearing formations are recognized in the investigated area. The first is the Pleistocene oolitic limestone aquifer, while the second is the Miocene limestone aquifer (Marmarica formation), which is developed as a secondary aquifer in the area (Figure 3).

Pleistocene oolitic limestone aquifer

It has a wide distribution and considered to be the most important aquifer along the coastal strip. It extends about 10 km southward. The foreshore oolitic limestone ridges are characterized by less cementing materials if compared with the inland ridges, which acquire the former one more porous nature. Also, the flanks of the ridges are covered by loose foreshore sand accumulations, which permit a direct infiltration and percolation of rainfall. Such foreshore sand accumulations are witnessed as noticed at El Daba'a and Baggush localities. The oolitic limestone aquifer is recharged through infiltration of annual rainfall on the oolitic limestone ridges and/or from the rainwater falling on the elevated tableland area. The groundwater exists as a free water table (phreatic condition). The groundwater table attains altitude close to the mean sea level. It is a result of the local percolation in the coastal plain and the inflow from sea water.

At El Dabaa locality, the direction of groundwater flow is due north and south. The hydraulic gradient is gentle in the northern part (0.0002), while at the southern one it records (0.0003)^[2]. At Ras El Hekma locality, the investigated aquifer is characterized by permeability (0.0015 m/min), Transmissivity (0.03 m²/min) and storativity (6.31*10⁶)^[8].

Miocene limestone aquifer

Marmarica Formation is developed as a secondary aquifer along the coastal area to the west of Alexandria and is explored at El Daba'a, Fuka, Matruh and El Sallum localities. It is composed of limestone, dolomite and shale sequence related to the Middle Miocene. This formation is largely fractured and exists in successive horizons separated by impervious clays with occasional bands of sandstone.

The groundwater in this fractured limestone exists in the form of thin sheets accumulating at the contact with the impervious clay and depends on its supply by local rainfall (semi confined water). The groundwater of the Marmarica aquifer is naturally discharged upward through the flowing springs and by subsurface flow into the Mediterranean Sea due north. The lateral and vertical facies changes affect the productivity of the aquifer, particularly along the coastal area. However, the transmissivity of the Marmarica aquifer ranges between 10^{-4} and 10^{-2} m²/sec^[1].

Methodology

Fifty groundwater samples were collected from the investigated area. The depths to the groundwater surface were measured using an electric line sounder (Richter measuring tool, 100-200 m) and wells' locations were estimated using a field GPS instrument (Magellan colour trak). Samples were collected using a peristaltic pump at the surface. Samples for analyses were immediately filtered through 0.45 micrometer cellulose membrane filters. The performed chemical analyses included the determination of E.C, pH, T.D.S, Ca, Mg, Na, K, Alkalinity, SO₄, Cl, I and Br. hydrochemical analyses were carried out at the central lab of Desert Research Center according to the methods adopted by^[6,10]. The instruments used were a pH meter, EC meter, Flame

photometer, Spectrophotometer and Ion Selective Electrode (Orion), Plasma Optical Emission-Mass spectrometer (POEMS III)

RESULTS AND DISSCUSION

At El Daba'a area, two aquifers are recognized, Miocene and Pleistocene. Miocene is represented by ten samples (Nos. 1-10 inclusive) and Pleistocene aquifer is represented by ten samples (Nos. 11-20 inclusive) (Figure 5).

At Ras El Hekma area the Pleistocene aquifer is represented by thirty samples (Nos. 21-50 inclusive).

Groundwater salinity

The pliestocene aquifer

At El Daba'a area, the groundwater salinity ranges between 523.86 ppm (No.20) and 7484.7 ppm (No.15) (TABLE 1) with an average of 3238 ppm. According to the frequency distribution of groundwater salinity (Figure 6), it is clear that about 40% of the

Figure 5: Map showing wells' locations and aquifers' distribution

D

Current Research Paper

TABLE 1: Chemical analysis data in ppm											
Well no.	salinity	Hardness	Alkalinity Pleiste	Ca ocene aqu	Mg ifer (El Da	Na aba'a area	K a)	CO3	HCO3	SO4	Cl
11	4760.22	1377 403	466 9876	132.65	254 15	1233 33	54	32	504 26	400	2401 96
12	5170 462	1275 505	416 9588	81 632	260.35	1449.86	71	28	451.4	750	2303.92
13	2622.54	765.1847	306.872	81.63	136.37	650	65	28	317.2	400	1102.94
14	3320.508	1020.342	650.4438	81.63	198.36	850	48	32	727.9	325	1421.568
15	7484 745	1571 279	316 8666	155.1	287.63	2200	72	36	313 13	950	3627.45
16	2722 63	867 2643	510 3446	81.63	161 17	650	64 5	40	540.86	450	1004 9
17	852 871	50 9952	413 6118	8 16	7 438	300	13	36	431.066	160	112.74
18	1930 608	152,9873	880 6027	20.4	24 79	671 42	31	68	935 33	157 143	490.19
19	2999.6	407 9885	296 8483	81.63	49 59	950	42	40	280.6	250	1446.08
20	523.85	203 9612	193 4597	40.81	24 79	108	11	20	195.2	104	117.65
	020.00	203.7012	Pleistoc	ene aquife	er (Ras El	Hekma a	rea)	20	170.2	101	117.00
21	3525.986	918.2736	366.877	91.836	167.37	925	47	56	333.46	675	1397.05
22	1499.165	459.0531	300.1787	61.22	74.38	350	43	40	284.66	200	588.235
23	3257.825	749.9788	150.0736	60	145.8	900	64	32	117.93	600	1397.06
24	3063.14	999.5339	206.793	216.32	111.58	750	42	28	195.2	200	1617.64
25	7038.565	1683.398	340.2236	204.08	285.15	2000	66	32	349.73	600	3676.47
26	3286.83	918.2382	246.8138	102.04	161.17	900	33.5	32	235.86	200	1740.19
20	3639 79	1061 131	250 1551	106.12	193 41	1000	25	28	248.06	325	1838 23
28	14125.76	1877.159	160.0998	306.12	270.31	4500	140	16	162.66	1500	7312
29	14266.03	2602 106	303 5174	142.85	545 5	4450	115	40	288 73	660	8168 316
30	8578 41	1377 58	433 6018	81.63	285.15	2700	110	56	414.8	800	4338 23
31	4596.95	1199 99	343 5674	88	238.14	1300	51	24	370.06	333 33	2377 45
32	5919 945	1549 944	240 1446	128	298.89	1700	57	32	227 73	600	2990 19
33	3723 565	979 6177	263 4859	61 22	200.85	1000	43	40	239.93	542.85	1715 68
34	4655.88	1346 931	490 3237	102.04	265 32	1266.66	62	48	500.2	333 33	2328.43
35	6755.46	1530 633	270 1658	102.04	309.95	2050	48	36	256.2	650	3431 37
36	1820 149	714 2586	473 6359	44 89	146 29	428 57	18	52	471 73	85 714	808 82
37	7023.035	1632 556	243 4701	142.85	309.95	2100	46	40	215 53	600	3676.47
38	3695 36	959.07	313 5386	102.03	171.09	1000	38.5	32	317.2	600	1593 13
39	3770 192	918 37	226 8113	61 22	185 97	1050	42	24	227 73	700	1593 137
40	5151 135	1306.027	356 8982	118 36	245.48	1/100	37	36	361.93	633 33	2500
40	7122.04	1556.062	273 4805	122 44	303 75	2050	51	48	235.86	875	3553.92
42	3522.04	1520.257	313 5437	151.02	277 71	750	16.5	24	333.46	200	1936 27
43	637 788	336 6078	286 0958	59.18	45 87	110	10.5	24	300	50	179 738
43	676 51	351 9402	340 4451	48 97	55 79	112.5	20	32	350	95	137.25
45	593.04	265 2271	163 0479	36 73	42 15	112.5	85	24	150	130	166 66
46	7726 58	1887 916	547 0033	71 42	415 33	2050	140	68	528.66	1500	3217.5
47	6870.36	2142 876	250 1658	132.65	440.12	1750	120	24	256.2	550	3725 49
48	5195.01	2142.070	253 4912	163.26	414 09	966.66	97	32	230.2	1600	1800
49	1698 047	612 1874	253.1912	65 31	109 102	400	29	16	276 53	235	705 37
50	25594 99	6378 029	233.5070	285 71	1376 17	7500	205	0	270.55	1625	14460 78
	2007 1177	0370.022	Mio	cene aquif	er (El Dal	ba'a area))		201.00	1020	11100.70
1	3855.507	1624.24	240.1629	270	230.78	800	42	20	252.133	700	1666.66
2	5360.645	2040.099	190.1368	367.34	272.75	1083.33	45	8	215.53	1466.66	2009.8
3	3785.895	2294.853	130.0736	510.2	247.96	312.5	25	20	117.93	1925	686.27
4	3736.354	2295.032	150.1052	448.979	285.15	375	$\frac{-2}{29}$	8	166.73	1600	906.86
5	4350.887	1734.059	166.7772	326.53	223.16	816.66	40	16	170.8	1250	1593.137
6	36007.89	7141.597	220,1605	918.36	1177.81	10750	160	8	252.13	3750	19117.65
7	9509.3	1019.963	286.8562	204.08	123.97	3125	62	28	292.8	1187.5	4632.35
8	22758.49	4336.858	153.4173	265.31	892.65	6875	190	24^{-0}	138.26	2187.5	12254.9
9	14309.63	4298.552	146.7556	780	571.05	3700	42	$\frac{1}{20}$	138.266	3000	6127.45
10	11335.98	3315.039	216.806	653.06	409.13	3000	40	20	223.66	2200	4901.96

total samples range between 2622 ppm and 3320 ppm $\,$ with an average value of about 2916 ppm, 30 % range

Figure 7: Salinity distribution of the miocene groundwater, El Daba'a area (May, 2004)

Figure 8: Iso-salinity contour map of the pleistocene groundwater (May, 2004)

Figure 9: Iso-salinity contour map of the Miocene groundwater (May, 2004)

between 523 ppm and 1930 ppm with an average value of about 1102 ppm and about 20 % range between 4760 ppm and 5170 ppm with an average value of about 4965 ppm, only 10% records 7484 ppm (No.15). From the iso-salinity contour map (Figure 8), it is clear that the groundwater salinity increases generally from west to east. This is mainly due to dissolution and leaching processes during groundwater movement.

At Ras El Hekma area, the groundwater salinity varies between 593.04 ppm (No.45) and 25594 ppm (No.50) with an average value of about ppm reflecting

Environmental Science An Indian Journal a wide variation. About 30% of the samples range between 3063 ppm and 3770 ppm with an average value of about 3498 ppm.(Figure 6). From iso-salinity contour map (Figure 8) it is clear that the groundwater salinity in Fuka area (Nos. 21- 25 inclusive) increases from south to north due to leaching and dissolution (the same direction of the groundwater movement), while at Ras El Hekma area, the water point are located within the southern flank of the fore-shore ridge (in the first depression), so the precipitated rainwater causes leaching and dissolution, and consequently groundwater salinity increases southward.

The miocene aquifer

As mentioned before, Miocene aquifer was detected as a water-bearing formation at El Daba'a area. About 50% of the total samples (at samalous area) (Nos. 1-5 inclusive) range between 3736 ppm and 5360 ppm with an average value of about 4217ppm, about 30% range between 14309 ppm and 36007 ppm with an average value of about 24358 ppm and 20% range between 9509 ppm and 11335 ppm with an average value of about 10422 ppm (Figure 7). According to the constructed iso-salinity contour map (Figure 9), it is clear that, the groundwater salinity of the Miocene aquifer increases northward in the same direction of groundwater movement. This reflects the most important role of leaching and dissolution for aquifer sediments during water movement.

Groundwater hardness

The pleistocene aquifer

At El Daba'a area, the total hardness of the Pleistocene groundwater ranges between 50.99 mg/l CaCO₃ (No. 17) to 1571.27 mg/l (No.15) with an average value of 769 mg/l as CaCO₃, while at Ras El Hekma area, it ranges between 265 mg/l as CaCO₃ (No. 45) and 6378 mg/l CaCO₃ (No. 50) with an average value of 1398.28 mg/l as CaCO₃.

The miocene aquifer

In the Miocene groundwater it ranges between $1019.96 \text{ mg/l CaCO}_3$ (No. 7) and $7141.59 \text{ mg/l CaCO}_3$ (No. 6) with an average value of $3010 \text{ mg/l as CaCO}_3$.

Groundwater alkalinity

The pleistocene aquifer

At El Daba'a area, the alkalinity of Pleistocene groundwater ranges between 193.45 mg/l as $CaCO_3$ (No. 20) and 880.62 mg/l as $CaCO_3$ (No. 18) with an average value of 445.29 mg/l as $CaCO_3$. At Ras El Hekma area, it ranges between 150 ppm (No. 23) and 547 ppm (No. 46) with an average value of about 296.48 ppm.

The miocene aquifer

At El Daba'a area, the alkalinity of the Miocene groundwater ranges between 130.07 mg/l as $CaCO_3$ (No.3) and 286.85 mg/l as $CaCO_3$ (No.7) with an average value of about 190.12 mg/l as $CaCO_3$. According to the obtained results of alkalinity, it is clear that, the alkalinity of the Miocene groundwater is lower than that of the Pleistocene groundwater. This is mainly due to the higher salinity of the former one.

Major ion distribution

The pleistocene aquifer

At El Daba'a area, the concentrations of cations and anions increase in the same direction of the ground-TABLE 2: Ion dominance and chemical water type at the study area (May, 2004)

Category	Category Ion dominance		Well no.	Percent %				
	The pleistocene aquifer (El Daba'a area)							
Ι	$Cl>SO_4$ >HCO ₃ Na ⁺ >Mg ⁺⁺ >Ca ⁺⁺	Cl-Na	12, 13, 15	30%				
V	$Cl^{-} > HCO_{3} > SO_{4} - Na^{+} > Mg^{++} > Ca^{++}$	Cl-Na	11, 14, 16, 19	40%				
VI	$HCO_{3} > CI > SO_{4}$ $Na^{+} > Mg^{++} > Ca^{++}$	HCO ₃ -Na	18, 17, 20	30%				
Т	he pleistocene aquif	fer (Ras El H	ekma area)					
I II III	$Cl>SO_4^->HCO_3^-\\Na^+>Mg^{++}>Ca^{++}\\Cl^->HCO_3^->SO_4^-\\Na^+>Mg^{++}>Ca^{++}\\Cl^->SO_4^->HCO_3^-\\Na^+>Ca^{++}>Mg^{++}\\HCO_3^->Cl^->SO_4^-\\$	CI-Na CI-Na CI-Na	21, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 46, 47, 48, 50 22, 34, 36, 42, 45, 49 24	70 % 20 % 3.3%				
1V	Na ⁺ >Mg ⁺⁺ >Ca ⁺⁺	HCO ₃ -Na	43, 44	6.7%				
	Groundwater in the miocene aquifer							
Ι	$Cl > SO_4 > HCO_3$ $Na^+ > Mg^{++} > Ca^{++}$	Cl-Na	1, 2, 5, 6, 8, 9, 10	70%				
II	$Cl^{-}>SO_{4}^{-}>HCO_{3}^{-}$ $Na^{+}>Ca^{++}>Mg^{++}$	Cl-Na	7	10%				
III	$SO_4^{}>Cl^{-}>HCO_3^{}$ $Ca^{++}>Mg^{++}>Na^{+-}$	SO ₄ -Ca	3	10%				
IV	$SO_4^{}>HCO_3^{}>Cl^{}$ $Mg^{++}>Ca^{++}>Na^{+-}$	SO ₄ -Mg	4	10%				

water salinity, which confirm the leaching and dissolution role, except the carbonate and bicarbonate concentration which have no definite trend since its concentration is mainly affected by the local precipitation which acts as one of the main source of carbonate and bicarbonate in the groundwater. At Ras El Hekma area the concentration of the major cations and anions also increase in the same direction of the salinity except the potassium and carbonate and bicarbonate.

The miocene aquifer

At El Daba'a area, the concentration of cations and anions increase in the same direction of the salinity, ex-

Figure 10: (a)- Iso-contour maps of the Miocene groundwater, El Daba'a area (May, 2004)

Figure 10: (b)- Iso-contour maps of the Miocene groundwater, El Daba'a area (May, 2004)

cept the carbonate and bicarbonate concentration (Figures 10 a and b). This reflects the impact of leaching and dissolution process.

Chemical water type

The pleistocene aquifer

At El Daba'a area, the majority of the Pleistocene the groundwater samples (70%) are characterized by categories I and V so, the chemical water type is Cl-Na (TABLE 2) and the rest of the samples exhibit category VI showing HCO_3 -Na type. The bicarbonate type reflects the initial phases of metasomatism in groundwater. On the other hand, at Ras El Hekma area, four category are recognized (TABLE 2). The majority of the samples (93.3 %) are characterized by categories I, II and III. So, the chemical water type is Cl-Na which indicates advanced stage of groundwater metasomatism. Only 6.7 % of samples have Na-HCO₃ type (category VI) indicating the effect of the dilution due to rainfall precipitation.

The miocene aquifer

In the Miocene aquifer, 80% of the samples are characterized by categories I and II so, the chemical water type is Cl-Na, reflecting a mature stage of groundwater metasomatism, 10% exhibits category III representing Ca-SO₄ type and 10% exhibits category IV showing Mg-SO₄, which represent intermediate stage of groundwater evolution.

Conclusion

The percent of the samples having Cl-Na chemical water type in Miocene aquifer is greater than that of Pleistocene aquifer reflecting the less advanced stage of the groundwater evolution in the latter, and the appearance of 30% of the samples with Na-HCO₃ type in the Pleistocene aquifer is mainly due to precipitation.

Environmental Science An Indian Journal

Ion ratios

rNa+/rCl

The pleistocene aquifer

At El Daba'a area, sixty percent of the Pleistocene groundwater samples have values less than unity and 40% of the samples are more than unity (TABLE 3). The increase in the sodium ion concentration reflects meteoric and deep meteoric water recharges (reflecting the impact of fresh water on groundwater quality). At Ras El Hekma area, about 86.7% of the samples have values less than unity, 10% approximately equal unity and 3.3% is more than unity, reflecting the effect of marine salts.

The miocene aquifer

At El Daba'a area, the Miocene groundwater has 90% of samples with rNa⁺/rCl⁻ value less than unity, reflecting marine salt leaching (marine facies groundwater types) and 10% nearly equal unity (No.7)

rCa²⁺/rMg²⁺

The pleistocene aquifer

At El Daba'a area, the Pleistocene groundwater has ratio ranges between 0.19 and 0.99 with a mean value of 0.49. At Ras El Hekma area, rCa^{2+}/rMg^{2+} is ranged between 0.1 and 0.78 (less than unity), only the sample No. 19 have ratio equal 1.17. About 56.7% of the sample have the rCa^{2+}/rMg^{2+} <or = 0.29 reflecting sea water contamination.

The miocene aquifer

At El Daba'a area, the Miocene groundwater has ratio ranges between 0.18 and 0.99 with an average value of about 0.8, reflecting the impact of sediments rich in dolomite within the aquifer sediments.

TABLE 3: Th	e values of the ic	ons ratios of th	e study area, May
2004			

No.	rNa ⁺ /rCl ⁻	rCa ⁺⁺ /rMg ⁺⁺	rs0 ₄	(CI-Na) /rCl	r(Cl'/Br`)	r(I'/Br')
		Pleistocene a	quifer (El Daba'a	area)	
11	0.79	0.32	0.12	0.21	94	0.1
12	0.97	0.19	0.24	0.03	70	0.01
13	0.91	0.36	0.27	0.09	93	0.08
14	0.92	0.25	0.17	0.08	73	0.02
15	0.94	0.33	0.19	0.06	113	0.01
16	1	0.31	0.33	0	67	0.02
17	4.1	0.67	1.05	-3.1	63	0.01
18	2.11	0.5	0.24	-1.11	76	0.03
19	1.01	1	0.13	-0.01	79	0.01
20	1.42	1	0.65	-0.42	85	0.04
	P	leistocene aqu	ifer (Ra	as El Hekn	na area)	
No.	rNa ⁺ /rCl ⁻	rCa ⁺⁺ /rMg ⁺⁺	rSO ₄	$(CI - Na^+)$	r(Cl ⁻ /Br ⁻)	r(I ⁻ /Br ⁻)
21	1.02	0.33	/rCl	-0.02	88	0.02
$\frac{21}{22}$	0.02	0.55	0.30	-0.02	84	0.02
22	0.92	0.5	0.23	0.00	78	0.02
23	0.72	1.18	0.52	0.01	78	0.01
24	0.72	0.43	0.02	0.26	73	0.01
25	0.04	0.43	0.12	0.10	74 84	0.01
20	0.8	0.38	0.08	0.2	80	0
21	0.04	0.55	0.15	0.10	02	0
20	0.95	0.09	0.15	0.05	103	0
29	0.04	0.10	0.00	0.10	105	0
21	0.90	0.17	0.14	0.04	04	0.01
22	0.04	0.22	0.1	0.10	94	0.01
22	0.00	0.20	0.15	0.12	100	0.01
33	0.9	0.18	0.23	0.1	86	0.01
25	0.04	0.23	0.11	0.10	108	0.01
20	0.92	0.2	0.14	0.08	79	0.01
27	0.82	0.19	0.08	0.18	/0	0.01
20	0.00	0.26	0.12	0.12	04	0.01
20	1.02	0.30	0.28	0.05	90	0.01
39	0.86	0.2	0.52	-0.02	92	0.04
40	0.80	0.29	0.19	0.14	93	0.04
41	0.69	0.24	0.18	0.11	81	0.01
42	0.0	0.55	0.08	0.4	64 65	0.01
43	1.26	0.78	0.21	0.00	0.5	0.02
44	1.20	0.55	0.51	-0.20	81 65	0.18
43	1.02	0.35	0.38	-0.02	03 60	0.04
40	0.98	0.1	0.54	0.02	09	0.01
4/	0.72	0.18	0.11	0.28	89 16	0.01
40	0.85	0.24	0.00	0.17	40	0.04
49	0.87	0.30	0.25	0.13	08 00	0.02
	0.8	Miocene ag	0.08 nifer (F	0.2 Daba'a a	<u></u>	0
Na	-Na ⁺ /Cl		rSO ₄ "	$(CI - Na^+)$		
INO.	rna /rci	rCa /rwig	/rCl ⁻	/rCl ⁻	r(CI/Br)	г(1/ВГ)
1	0.74	0.71	0.31	0.26	88.00	0.00
2	0.83	0.82	0.54	0.17	93.00	0.01
3	0.70	1.25	2.07	0.30	84.00	0.00
4	0.64	0.96	1.30	0.36	78.00	0.01
5	0.79	0.89	0.58	0.21	80.00	0.00
6	0.87	0.47	0.14	0.13	96.00	0.01
7	1.04	1.00	0.19	-0.04	104.00	0.01
8	0.87	0.18	0.13	0.13	100.00	0.00
9	0.93	0.83	0.36	0.07	127.00	0.00
10	0.94	0.97	0.33	0.06	117.00	0.00

Current Research Paper rSO₄²/rCl⁻

The pleistocene aquifer

At El Daba'a area, the Pleistocene groundwater has ratios ranging between 0.12 and 0.65 (except No. 17 has a value of 1.04). At Ras El Hekma area, the values of the ratio range between 0.05 and 0.65 with an average value of about 0.21. This means that the groundwater is more comparable with sea water than in case of rainwater.

The miocene aquifer

At El Daba'a area, the Miocene groundwater has ratio ranges between 0.13 and 0.58 (except Nos. 3 and 4 have values 2.07 and 1.3, respectively), this means that 80% of the samples have values less than or equal 0.58 which is more closed to the sea water rather than to the rainwater.

rCl⁻/r(HCO², +CO²)

The pleistocene aquifer

At El Daba'a area, 30% of the Pleistocene groundwater is characterized by normal good groundwater, 30% are moderately contaminated water, 30% are seriously contaminated water and 10% are highly contaminated water. At Ras El Hekma area, about 6.7% of the groundwater samples are normal good water, 3.3% of the groundwater samples are slightly contaminated, 13.3% of the groundwater samples are moderately contaminated, 46.7% of the groundwater samples are seriously contaminated, 30% of the groundwater samples are high contaminated. The Pleistocene groundwater in Ras El Hekma area have less percent of the normal good water due to the presence of the alluvium deposits in the depression between the first two ridges in which the most of the wells are located.

The miocene aquifer

At El Daba'a area, 50% of the Miocene groundwater is characterized by seriously contaminated water (7.44-14.9) and the rest are highly contaminated water. The high percent of normal good groundwater in the Pleistocene groundwater is due to the effect of the rainwater rich in carbonate and bicarbonate which dissolve from the air during precipitation. The absence of good groundwater in the Miocene groundwater is due to the leaching and dissolution of the aquifer matrix rich

 TABLE 4: Assemblages of the hypothetical salts of the study area (May, 2004)

Assemblage category	e The hypothetical salts assemblage	Well no.	Percent %				
Pleistocene aquifer (El Daba'a area)							
Ι	NaCl, MgCl ₂ , MgSO ₄ , CaSO ₄ ,Ca(HCO ₃) ₂	15	10%				
III	NaCl, MgCl ₂ , MgSO ₄ , Mg(HCO ₃) ₂ ,Ca(HCO ₃) ₂	11,12,13,14	40%				
IV	NaCl, Na ₂ SO ₄ , MgSO ₄ , Mg(HCO ₃) ₂ ,Ca(HCO ₃) ₂	16,19,20	30%				
V	NaCl,Na ₂ SO ₄ ,Na(HCO ₃) Mg(HCO ₃) ₂ ,Ca(HCO ₃) ₂	17, 18	20%				
	Pleistocene aquifer (Ras E	l Hekma area)					
Ι	NaCl, MgCl ₂ , MgSO ₄ , CaSO ₄ ,Ca(HCO ₃) ₂	25, 26, 28, 29, 32,37 41, 42, 47, 48,50	36.7%				
III	NaCl, MgCl ₂ , MgSO ₄ , Mg(HCO ₃) ₂ ,Ca(HCO ₃) ₂	27, 30, 31, 33, 34,35 36, 38, 40, 49,	33.3%				
IV	NaCl, Na ₂ SO ₄ , MgSO ₄ , Mg(HCO ₃) ₂ ,Ca(HCO ₃) ₂	21,22,33, 39, 43,44, 45, 46	26.7%				
VI	NaCl, MgCl ₂ , CaCl ₂ , CaSO ₄ ,Ca(HCO ₃) ₂	24	3.3%				
	Miocene aquifer (El Daba'a area)						
Ι	NaCl, MgCl ₂ , MgS \overline{O}_4 , CaSO ₄ ,Ca(HCO ₃) ₂	1, 2, 3, 4, 5, 6, 8, 9, 10	90%				
II	NaCl, Na ₂ SO ₄ , MgSO ₄ , CaSO ₄ ,Ca(HCO ₃) ₂	7	10%				

with marine deposits, which decrease bicarbonate salts and increase the chloride salts.

rCl⁺/rBr⁻ and rI⁻/rBr⁻

The pleistocene aquifer

Environmental Science An Indian Journal

At El Daba'a area, the Pleistocene groundwater has bromide concentration ranging between 1.39 ppm (No.20) and 32.9 ppm (No.12) with an average value of about 16.47 ppm. The concentration of iodide ranges between 0.0085 ppm (No.17) and 0.29 ppm (No.14) with an average value of about 0.18 ppm (except No.13 has a value of 0.92 ppm). The average value of $r(Cl^{-1})$ Br) ratio is 81.3 ppm, reflecting sea water impact. The average value of r(I/Br) ratio in the Pleistocene groundwater is 0.03 ppm (more close to the sea water). At Ras El Hekma area, bromide concentration ranges between 1.7 ppm (No.44) and 49.4 ppm (No.25) with an average value of about 24.17 ppm (except Nos.29, 28 and 50 which have values equal 79.4, 79.7 and 146 ppm, respectively). The iodide concentration ranges between 0.04 ppm (No.43) and 1.38 ppm (No.48) with an average of about 0.28 ppm. The average value of r(Cl⁻/Br⁻) is 85.13 ppm which is more close to the sea water indicating groundwater contamination. The average value of r (I/Br) ratio is 0.01 ppm, which is intermediate value between sea water and rainwater.

The miocene aquifer

At El Daba'a area, the Miocene groundwater has bromide concentration ranges between 8.21 ppm (No.3) and 48.1 ppm (No.9) with an average value of about 26.83 ppm (except Nos.6 and 8 have bromide concentration equal 200 and 122 ppm, respectively). The concentration of iodide ranges between 0.026 ppm (No.3) and 0.32 ppm (No.7) with an average value of about 0.15ppm (except well No 12 has iodide concentration of 1.02 ppm). The average value of r (Cl^{-/} Br⁻) ratio is 96.7 ppm which is more closed to sea water than the Pleistocene groundwater due to the dilution effect of rainwater on the latter. The average value of r (I⁻/Br⁻) ratio is 0.0045 ppm which is less than that of the rainwater and more than that of the sea water.

The hypothetical salts assemblages

The pleistocene aquifer

At El Daba'a area, 90% of the Pleistocene groundwater samples belong to assemblages III, IV and V which contain two or three bicarbonate salts. This is due to the dilution effect of the rainwater. Samples in assemblage II considered intermediate stage of chemical development (three sulfate salts), reflecting a transition stage between assemblage {I} and {III,IV and V}. At Ras El Hekma area, about 73.3 % of the samples contain two or three chloride salts (group I, III and VI) indicating the presence of sea water intrusion, about 26.7 % contain two bicarbonate salts reflecting the effect of the rainfall on the aquifer recharging. Group III represent mixed water since it contain two chloride and two bicarbonate salts (TABLE 4).

The miocene aquifer

In the Miocene aquifer 90% of the groundwater samples are related to group I which contain two chloride salts (especially the MgCl₂ salt) reflecting the effect of marine salt dissolution and two sulfate salts showing the effects of leaching and dissolution of terrestrial salts (continental groundwater) due to the local precipitation with some contribution of cation exchange process.

Figure 11: (a)- Semi logarithmic graph of the Pleistocene groundwater, El Dabaa area (May 2004); (b)- Semi logarithmic graph to the Pleistocene aquifer, Ras El Hekma area (May 2004); (c)-Semi logarithmic graph of the Miocene groundwater, El Dabaa area (May 2004)

Conclusion

The groundwater of Pleistocene aquifer is in earlier stage of chemical development (two or three bicarbonate salts) than that water in Miocene aquifer which is in more advanced stage (assemblage I, where two chloride salts are recognized) (TABLE 4).

Schoeller's diagram (1962)

From plotting of each component of the chemical constitution of different localities of the study area on the semi-logarithmic graphs (Figure 11(a-c)) the following description is given:

Three main groups are distinguished on basis of relationships of the groundwater of the Pleistocene aquifer in El Daba'a area. **Group one:** Na>Mg>Ca and Cl>SO₄>HCO₃, it represents 30% of the total samples, where rNa/rCl <1. This characterizes the groundwater samples Nos. 12, 13, 15. These groundwater samples are saline water type.

Group two: Na > Mg > Ca and Cl > HCO₃ > SO₄ (40% of the total samples) where rNa/rCl <1, it characterized groundwater samples Nos. 11, 14, 16, 19 these groundwater samples are brackish water type. **Group three:** Na>Mg>Ca and HCO₃>Cl>SO₄ (30% of the total samples) where rNa/rCl>1. This characterizes the groundwater samples Nos. 18, 17 and 20 where these groundwater samples are fresh water type.

In Ras El Hekma area, four main groups of ion relationship as following represent the pleistocene aquifer

Environmental Science An Indian Journal

 TABLE 5: Classification of the water corrosion potential based
 on the calcite (SI) values and recommended treatment

Saturation indices	n Describtion	General recommendations
(SI)		
-5.0	Sever corrosion	Treatment recommended
-4.0	Moderate corrosion	Treatment recommended
-3.0	Moderate corrosion	Treatment recommended
-0.2	Moderate corrosion	Treatment should be considered
-1.0	Mild corrosion	Treatment should be considered
-0.5	Mild corrosion	Treatment probably not needed
0.0	Balanced	Treatment typically not needed
0.5	Some faint coating	Treatment typically not needed
1.0	Mild scale forming	Some aesthetic problems
2.0	Mild scale foming	Some aesthetic-considered
3.0	Moderate scale forming	Treatment should be considered
4.0	Sever scale forming	Treatment probably required
5.0	Sever scale forming	Treatment required

TABLE 6: The classification of the water samples in the study
area based on its tendency to be orrosive

Well	(SI)	Corrosivity	Well	(SI)	Corrosivity
no.	calcite	Corrosivity	no.	calcite	Corrosivity
1	0.66	Mild scale forming	26	0.68	Mild scale forming
2	-0.66	Mild corrosion	27	0.66	Mild scale forming
3	0.83	Mild scale forming	28	0.48	Mild scale forming
4	0.64	Mild scale forming	29	0.58	Mild scale forming
5	-0.15	Mild corrosion	30	0.82	Mild scale forming
6	0.67	Mild scale forming	31	0.8	Mild scale forming
7	0.7	Mild scale forming	32	0.8	Mild scale forming
8	0.43	Mild scale forming	33	0.68	Mild scale forming
9	0.64	Mild scale forming	34	1.08	Mild scale forming
10	0.8	Mild scale forming	35	0.62	Mild scale forming
11	1.45	Mild scale forming	36	1.04	Mild scale forming
12	0.95	Mild scale forming	37	0.78	Mild scale forming
13	1.09	Mild scale forming	38	1.01	Mild scale forming
14	1.49	Mild scale forming	39	0.62	Mild scale forming
15	0.91	Mild scale forming	40	1.03	Mild scale forming
16	1.48	Mild scale forming	41	0.78	Mild scale forming
17	0.42	Mild scale forming	42	1.53	Mild scale forming
18	1.35	Mild scale forming	43	1.11	Mild scale forming
19	0.81	Mild scale forming	44	1.15	Mild scale forming
20	0.68	Mild scale forming	45	0.53	Mild scale forming
21	0.97	Mild scale forming	46	0.99	Mild scale forming
22	0.92	Mild scale forming	47	0.83	Mild scale forming
23	0.25	Mild scale forming	48	1.01	Mild scale forming
24	0.82	Mild scale forming	49	1.02	Mild scale forming
25	0.87	Mild scale forming	50	0.66	Mild scale forming

groundwater:

Environmental Science

An Indian Journal

Group one: represents 70% of the total groundwater samples, where rNa/rCl <1, this characterizes the groundwater samples Nos. 21, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 46, 47, 48 and 50.

Group two: represents 20% of the total samples, it characterized groundwater samples Nos. 22, 34, 36, 42, 45 and 49.

Group four: Na > Ca > Mg and Cl > SO₄>HCO₃, it represents 3.3 % of the total samples, where rNa/rCl

<1, it characterize the groundwater sample No. 24 which have brackish nature

Group five: Na > Mg > Ca and $HCO_3 > SO_4 > Cl$ (6.7% of the total samples), it characterizes the groundwater sample No.43 where rNa/rCl<1 and No. 44 where rNa/rCl>1, where both are approximately fresh nature.

The Miocene groundwaters in El Daba'a area, also three main groups of ion relation ships are represented as following.

Group one: represents 20% of the total groundwater samples, where rNa/rCl<1, this characterizes the groundwater samples Nos. 1, 2, 5, 6, 8, 9 and 10.

Group six: Na >Ca >Mg and Cl>SO₄ >HCO₃ (10%). where rNa/rCl<1. This characterizes the groundwater No. 7.

Group seven: Ca > Mg > Na and SO₄>Cl>HCO₃ (10%), where rNa/rCl<1, this characterize the ground-water sample No. 3, where it is brackish groundwater type.

Group eight: Mg > Ca > Na and SO_4 > HCO₃ > Cl, where rNa/rCl <1, this characterized the groundwater samples No. 4. Where it is brackish water type.

Consequently, there are two main classes of geochemical characters for groundwater of the aquifers:

- 1. The groundwater which acquires its quality from leaching and dissolution of the aquifer material by direct rainfall or subsurface runoff.
- 2. The groundwater of marine chemical facies, resulting in a specific ion relationship with prominent increase in total salinity due to salt water intrusion or marine salt contamination.

Geochemical modeling

The saturation indices (SI) of the collected samples of the study area were calculated for the major mineral phases using the software package (WATEQF). They show a super-saturated with respect to the main carbonate minerals (aragonite, calcite, dolomite, and magnesite) nearly in all water samples. These minerals compose the main aquifer sediments in the study area (limestone deposits). Also 72.6 % of the groundwater samples show a super saturation with respect to huntite mineral CaMg₃(CO₃)₄.

The saturation indices were used as an indicator of water agressivity or scale forming. (TABLE 5) presents

13

a typical range of SI of calcite that may be encountered in a drinking water and a description of the nature of the water and general recommendations regarding treatment^[13].

Based on the classification using the saturation indices as indicator of water agressivity or scale forming, the water of the different samples of the study area range between mild corrosion (Nos.2 and 5), balanced (Nos. 42 and 44) and most of the samples (93.5%) are mild scale forming (TABLE 6). This may (by the time) leads to clog the pipes which transport the water to the inhabitants. So, it is recommended to be treated before using.

CONCLUSION

The groundwater characters of the Pleistocene and Miocene aquifers at El Daba'a and Ras El Hekma areas reveal the following:

- 1. The Quaternary deposits represent the main water-bearing formation (Pleistocene aquifer) but the Tertiary deposits act as secondary aquifer (Miocene aquifer) in the study area.
- 2. Regionally, the groundwater flow direction is northward. The recharging source is the meteoric water.
- 3. The groundwater salinity in the Pleistocene aquifer ranges from fresh to saline, but in the Miocene aquifer it varies from brackish to saline. Generally, the salinity of the pliestcene groundwater is less than that of Miocene groundwater.
- 4. The hardness of the Pleistocene groundwater ranges from soft to very hard, while in the Miocene groundwater it ranges from hard to very hard. The very high hardness value in both aquifers is strongly attributed to the predominance of the Ca⁺² and Mg⁺² minerals within the aquifers matrix.
- 5. The main chemical water type is Na-Cl, reflecting the final stage of groundwater evolution.
- 6. From shoeller's diagram, it is concluded that the groundwater acquires its salinity from leaching and dissolution of the aquifer materials.
- 7. From WATEQF program, the samples in both aquifers are super saturated with calcite, aragonite, magnesite, dolomite and huntite minerals.
- 8. Comparing the saturation indices of calcite with standard values in TABLE 4 it is found that 93.5% of the total groundwater samples are mild scale form-

ing and should be treated should be treated before use.

Current Research Paper

REFERENCES

- [1] ACSAD; 'Water Resources in Arab Countries', Regional office for Sience and Technology in the Arab states, UNESCO Report, 168 (**1990**).
- [2] S.M.Atwa; Hydrogeology and Hydrogeochemistry of the North Western Coast of Egypt, Ph.D. Thesis, Fac.Sci., Alex. Univ., (1979).
- [3] CONOCO; 'Geological Map of Egypt', Egyptian General Petroleum Corporation, (**1986**).
- [4] I.Z.El Shamy; The geology of water and soil resources in El Daba'a area, Western Mediterranean coastal zone, Egypt, M.Sc. Thesis, Fac. Sci., Cairo Univ., (1968).
- [5] M.M.El Shazly; Geology, Pedology and Hydrogeology of Mersa Matruh Area, Western Mediterranean Coastal zone, Egypt, Ph.D. Thesis, Fac.Sci., Cairo Univ., (1964).
- [6] M.J.Fishman, L.C.Frieman; 'Method of Determination of Inorganic Substances in Water Fluvial Sediments', U.S Geol.Surv., Book 5, Chapter AI, open file report, Enver, Clorado, 85-495 (**1985**).
- [7] F.A.Hammad; The Geology of Water Supplies in Ras El Hekma Area, Western Mediterranean Coastal Zone, Egypt, M.Sc. Thesis, Fac. Sci., Cairo Univ., (1966).
- [8] A.A.Hassan, I.M.El Ramly; Preliminary groundwater investigation in the Ras El Hekma Area, Internal Report of Desert Inistitute, Cairo, (1966).
- [9] I.Marzouk; 'Rock Stratigraphy and Oil Potentialities of the Oligocene and Miocene in Western Desert, UAR. 7 th Arab Petrol.Cong., Kuwait, 54(B-3), 30-40 (1969).
- [10] F.H.Rainwater, L.L.Thatcher; 'Method for Collection and Analysis of Water Samples', U. S.Geol. Survey. Water supply. Paper No. 1454. U.S.A., 301 (1960).
- [11] R.Said; 'The Geology of Egypt', El Sevier Pub. Company, Amsterdam, New York, 201-209 (1962).
- [12] H.Schoeller; 'Les eaux souterraines', Paris, France, Massio et Cie, 642 (1962).
- [13] http://wilkes.edu/eqc/corrosion.htm.
- [14] M.H.Zaki; 'Assessment of Surface Water Runoff in Mersa Matruh Area', North Western Coastal Zone, A.R.E. Ph.D. Thesis, faculty of science, Alex. Univ., (2000).

