ISSN : 2249 - 8877

Research & Reviews On Polymer

Full Paper

RRPL, 6(3), 2015 [104-109]

Preparation of modified expandable graphite with boric acid as assistant intercalator

Xiuyan Pang*, Shuxia Ren, Xuezhi Yang College of Chemistry and Environmental Science, Hebei University, Baoding 071002, (P.R.CHINA) E-mail: pxy833@163.com

ABSTRACT

With $KMnO_4$ as oxidant, H_2SO_4 as intercalator and boric acid (H_3BO_3) as assistant intercalator, modified expandable graphite (written as EG_p) was successfully prepared in oxidizing and intercalating reaction of natural graphite. When the mass ratio of C:KMnO₄:H₂SO₄(98%):H₂BO₂ was controlled as 1.0:0.4:5.0:0.6 (g·g⁻¹), H₂SO₄ diluted to a mass concentration of 78 wt % before intercalation reaction, and the reaction lasted 40 min at 40°C, the expanded volume and initial expansion temperature of the prepared EG_B reached 570 mL·g⁻¹ (at 800!) and 141°C, respectively. XRD pattern testified its intercalation and layer structure and FTIR spectroscopy illuminated the main functional groups of intercalating composite. Flame retardancy of EG_B for linear low density polyethylene (LLDPE) was also investigated. Addition of 30 wt % the EG_{$_{\rm B}$} to the polymer improved the limiting oxygen index (LOI) from 17.6 to 30.2%, and the UL-94 reached V-0 level. Whereas, the LOI of the same amount normal expandable graphite (EG) was only 25.1%, and the UL-© 2015 Trade Science Inc. - INDIA 94 only reached V-1 level.

KEYWORDS

Modified expandable graphite; Boric acid; Intercalator; Dilatability; Flame retardancy.

INTRODUCTION

Natural graphite is a kind of crystal compound with layer structure, and its intercalating compound named expandable graphite (EG) can be prepared when non-carbonaceous reactants are inserted into graphite layers through chemical or electrochemical reaction^[1, 2]. EG is known as a new generation of intumescent flame retardant for its good capability of halogen-free, low-smoke and low pollution potential^[3-6]. When exposes to flame, EG expands and give a swollen multicellular char, which can protect materials from heat and oxygen. Simultaneously, the expansion will absorb huge heat, which can decrease the burning temperature. When EG is oxidized on reaction with H_2SO_4 at high temperature^[7], the released gas such as CO_2 , H_2O and SO_2 can reduce concentration of combustible gas.

When EG is used as flame retardant, its expanded volume (EV) and initial expansion temperature T_0 are very important parameters. It's worth noting that reactants and theirs contents such as oxidant, intercalator and assistant intercalator, and reaction temperature, reaction time can all affect its dilatability. It was found that the H_2SO_4/APP (APP, ammonium polyphosphate, as an assistant intercalator)

105

EG^[8], prepared through two-step method, presented a higher EV of 240 mL·g⁻¹ than that of the single H_2SO_4 intercalating EG (210 mL·g⁻¹). EG holding a T_0 of 310°C and EV of 270 mL·g⁻¹ could be prepared with 85 wt % H_2SO_4 as intercalator, KMnO₄ as oxidant and FeSO₄ as close agent^[9].

It is worth noting that if a traditional flame retardant is used as assistant intercalator, it not only improve the dilatability and flame retardancy, but also decrease sulfur content in EG. Boric acid is a well-known non-toxic, smoke suppressing and halogen-free flame retardant with good flame retardancy^[10-12]. It holds lower melting point and can absorb heat and lose crystallization water, which make it has the simultaneous gas phase and condensed phase flame-retardation effect.

In this research, to obtain graphite intercalating compounds possessing high dilatability and flame retardancy, EG was modified with H_3BO_3 . The dosages of KMnO₄, H_2SO_4 , H_3BO_3 and reaction temperature, reaction time were optimized in graphite intercalating reaction. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectroscopy (FTIR) were employed to illuminate the layer structure and intercalating components. Flame retardancy, indicated as limiting oxygen index (LOI) and vertical burning UL-94 rating of H_3BO_3 modified EG (written as EG_B) for LLDPE was also investigated.

EXPERIMENTAL

Materials and reagents

Natural flake graphite 5092 was provided by Action Carbon CO. LTD, Baoding, China. H_3BO_3 , H_2SO_4 (98%) and KMnO₄ are all analytical agents. LLDPE 7540 obtain from Daqing.

Preparation of the EG_B

In graphite intercalating reaction, reactants were quantified according to a definite mass ratio of $C:H_2SO_4(98\%):KMnO_4:H_3BO_3; H_2SO_4$ was diluted to a definite concentration with deionized water before reaction. The quantified reactants were mixed and stirred in the order of diluted H_2SO_4 , H_3BO_3 , C and $KMnO_4$ in a 250mL beaker, which is controlled

at a constant temperature for some time. After reaction, the solid phase was washed with deionized water and dipped in water for 2.0 h until pH of the waste water reached to 6.0-7.0, then EG_B obtained after filtration and drying at 50-60°C for about 5.0 h.

Characterization of the specimens

EV was an important factor to judge dilatability of EG. When the volume of EG increase to 1.5 times of its initial volume, the oven temperature was defined as T_0 . EV and T_0 were measured following the reported method^[13].

XRD analysis for material natural graphite and EG_B were performed with a Y-4Q X-ray diffractometer (Dandong, China) employing Ni-filtered Cu Ka_{1,2} radiation with 20 ranging from 10° to 70°.

Specimen was triturated and mixed with potassium bromide at the mass ratio of about 1:100. The powder was pressed into flake in mould, and FTIR spectra were recorded between 4000-400 cm⁻¹ using FTS-40 FTIR spectrograph (America) with a resolution of 2 cm⁻¹.

Mixtures of flame retardant and LLDPE were melted at 140°C in Muller (Jiangsu, China) and pressed at 10 MPa, and then it was chopped in sliver. The slivers were used to measure LOI according to GB/T2406-1993 with oxygen index instrument (Chengde, China). At the same time, vertical burning tests were performed using a HC-3 vertical burning instrument (Tientsin, China) according to the standard UL 94-1996.

RESULTS AND DISCUSSION

Influence of reactants dosages and reaction condition on EG_{R} dilatability

Modified EG_B was prepared with KMnO₄ as oxidant, H_2SO_4 as intercalator and H_3BO_3 as assistant intercalator. The influence of mass ratio of natural graphite to KMnO₄, H_3BO_3 , H_2SO_4 and its concentration, reaction time and reaction temperature on EG_B dilatability were tested respectively.

Influence of KMnO₄ dosage on EG_B dilatability

Single-factor experiments of the influence of

 $KMnO_4$ dosage on dilatability were carried out by changing $KMnO_4$ mass in the range of 0.3-0.5 g·g⁻¹ (with 1.0 g C as reference). According to the procedure mentioned above, experiments were carried out under the constant mass ratio C:H₂SO₄(98%):H₃BO₃ of 1.0:5.0:0.4 (g·g⁻¹). Before reaction, H₂SO₄ was diluted to 78 wt %, and the reaction lasted 40 min at 40°C.

Figure 1 shows the changes of EV with the amount of KMnO_4 . As oxidant, insufficiency KMnO_4 will cause an incomplete oxygenation of graphite and decrease of EV, while superfluous KMnO_4 will cause excessive oxygenation of graphite, which leads to a decrease in EG granularity and EV. When the mass ratio of KMnO_4 to C is controlled as 0.4 g·g⁻¹, the prepared EG possesses a maximum EV of about 550 mL·g⁻¹. So, the feasible dosage of KMnO_4 can be set as 0.4 g·g⁻¹.

Influence of H₂SO₄ dosage on EG_B dilatability

In order to investigate the influence of H_2SO_4 dosage with a initial concentration of 98 wt % on dilatability, it was changed in the range of 4.6-5.3 g·g⁻¹ and with the mass ratio C:KMnO₄:H₃BO₃ keeping as 1.0:0.4:0.4, the reaction lasted 40 min at 40°C, and H₂SO₄ was diluted to 78 wt %.

Figure 2 shows the changes of EV with H_2SO_4 mass. As a main reactant, insufficient H_2SO_4 will

cause a poor oxidation of KMnO_4 and lead to an incomplete intercalation reaction and the decrease of dilatability. With the increase of H_2SO_4 dosage, the oxidation of KMnO_4 is enhanced, causing the intercalation reaction gradually completed and leading to the increases of dilatability. When the H_2SO_4 dosage achieves a balance, the prepared EG_8 will have the largest EV. Conversely, EV will decrease when the H_2SO_4 dosage under or over the suitable value. Results shown in Figure 2 presents the feasible mass ratio of H_2SO_4 to C is 5.0 g·g⁻¹.

Influence of H_2SO_4 concentration on EG_B dilatability

Under the constant mass ratio C:KMnO₄:H₂SO₄(98%):H₃BO₃ of 1.0:0.4:5.0:0.4 (g·g⁻¹), the reaction lasted 40 min at 40°C, influence of H₂SO₄ weight concentration in reaction was detected. Before reaction, 98 wt % H₂SO₄ was diluted with de-ionized water to the desired wt %.

The oxidation ability of MnO_4^{-}/Mn^{2+} is related with the concentration of [H⁺], and there is a positive correlation. Therefore, within a certain range, the oxidation of $KMnO_4$ enhances with the increase of H_2SO_4 concentration, which causes the intercalation reaction gradually completed and leads to the increases of dilatability. But, with the further increase of H_2SO_4 concentration, it will cause the excessive oxidation of graphite when it over a suitable con-

Figure 3 : Influence of H₂SO₄ concentration on EV

centration. As shown in experiment results, the feasible H_2SO_4 concentration is about 78 wt %.

Influence of H₃BO₃ dosage on EG_B dilatability

Under the constant mass ratio $C:H_2SO_4(98\%):KMnO_4$ of 1.0:5.0:0.4 (g·g⁻¹), the reaction lasted 40 min at 40°C and H_2SO_4 diluted to 78 wt %, the influence of H₃BO₃ dosage was detected in the range of 0.53-0.67 $g \cdot g^{-1}$.

As an assistant intercalator, increase of H_2BO_2 dosage can improve EG dilatability as shown in Figure 4. When the mass ratio of H_3BO_3 to C is controlled as 0.60 g·g⁻¹, EG_B with maximum EV of 570 mL \cdot g⁻¹ can be gained. Superfluous H₃BO₃ will cause the relative scarcity of KMnO₄ and incomplete oxygenation of graphite.

Influence of reaction temperature on EG_B dilatability

Reaction temperature can effect reaction rate and balance direction. For exothermic reaction, such as oxidization and intercalation of graphite, the degree of reverse reaction will increase greatly with the increase temperature. So reaction temperature creates different effects on the reaction rate and direction. With C:H₂SO₄(98%):KMnO₄:H₃BO₃ controlled as 1.0:5.0:0.4:0.6 (g·g⁻¹), H_2SO_4 diluted to 78 wt % before reaction, and reaction lasted 40 min, the influence of reaction temperature on EV was detected.

When it is less than 40°C, the increase of tempera-

ture can improve EG dilatability. However, too high temperature causes the exothermic reaction releasing more heat and excessive oxygenation of graphite. So the feasible reaction temperature can be set as 40°C.

Influence of reaction time on EG_R dilatability

Under the ratio of mass C:H₂SO₄(98%):KMnO₄:H₃BO₃ as 1.0:5.0:0.4:0.6 $(g \cdot g^{-1})$, H₂SO₄ diluted to 78 wt % and reaction temperature controlled at 40°C, the influence of reaction time on EV was studied. Results show that extension of reaction time increases EG dilatability in the former 40 min, and then it has less influence on EV.

Feasible condition of EG_B Preparation

According to the above experiments, feasible conditions of EG_B preparation can be set as: mass ratio C:KMnO₄:H₂SO₄(98%):H₃BO₃ equaling 1.0:0.4:5.0:0.6; H_2SO_4 diluted to 78 wt % before reaction; intercalation reaction lasted 40 min at 40°C. The EV of EG_B under different expansion temperature were detected, and it shows a increasing trend along with the increasing expansion temperature before 800°C, and then it presents a decreasing trend caused by excessive oxygenation of EG_{B} . T_{0} and the maximum EV of the prepared EG_B are 141°C and

Research & Reolews On Polymer

Figure 5 : XRD of natural graphite and EG_R

570 mL·g⁻¹, respectively.

Preparation of reference expandable graphite EG with only H_2SO_4 intercalator

Compared with EG_B, the reference EG was prepared under the mass ratio C:KMnO₄:H₂SO₄(98%) of 1.0:0.4:5.0 (g·g⁻¹), other condition were the same as EG_B. T₀ and the maximum EV of EG was detected as 150°C and 500 mL·g⁻¹, respectively. Therefore, H₃BO₃ can obviously affect dilatability, and EG_B will show better flame retardancy than EG for its good dilatability.

Characterization of graphite and its intercalating compounds

XRD analysis of natural graphite and EG_{R}

XRD analysis for natural graphite and EG_B were performed. As shown in Figure 5, the two peaks with the interplanar crystal spacing of 0.334 nm and 0.167 nm corresponding to diffraction angle of 26.4°, 55.5° are the characteristic spectrums of natural graphite. While, the peaks of 26.3° and 55.3° show EG_B keeping the same layer structure as natural graphite. But it is worthy to note that the diffraction peak of 26.4° transfers to smaller angle of 26.3°. At the same time, it corresponds to a big interplanar crystal spacing of 0.339 nm due to intercalation in graphene planes. It can be clearly seen, under the oxidation of KMnO₄, the non-carbonaceous reactant can be easily inserted

Research & Reviews On Polymer

Watermbers (cm²) Figure 6 : FTIR analysis of EG and EG_B

into the graphene planes, which leads to the increase of interplanar crystal spacing.

FTIR analysis of the prepared samples

Figure 6 shows FTIR spectra of the prepared EG_B and reference EG. As can be seen from the results, two samples both show the characteristic absorption peaks of -OH at about 3430 cm⁻¹, caused by intercalation of H_2SO_4 or H_3BO_3 . At the same time, the peaks at about 1630 cm⁻¹ are the specific absorption peaks of C=C. The absorption peaks of S=O in EG is at 1118 cm⁻¹, but there are strong superimposed peaks at 1463 cm⁻¹ and 1190 cm⁻¹ in the FTIR of EG_B, it is because the absorption peaks of S=O and B=O are both appear in the range of 1500-1100 cm⁻¹ as reported^[14]. Furthermore, the peaks in the range of 800-600 cm⁻¹ in the EG_B belong to B-O specific absorption^[15]. The results announce the intercalation of intercalators.

Detection of flame retardance for LLDPE

Processing temperature of LLDPE is lower than 140°C, so the prepared EG_B can be used as retardant. The flame retarding composites were prepared as mentioned above, and LOI, UL-94 level of pure LLDPE, 70LLDPE/30EG_B and 70LLDPE/30EG (shown as wt %) were detected according to the mentioned methods. Results show that LOI of single LLDPE is only 17.6%, and its combustion accom-

panies with molten drop at the same time. Addition of 30% the reference EG improves LOI to 25.1%, and its UL-94 reaches V-1. Whereas, the addition of the same amount of EG_B can improve LOI and UL-94 rating to 30.2% and V-0 level, respectively. Therefore, the intercalating H_3BO_3 is more effectual in improving the flame retardancy.

CONCLUSIONS

According to the experiment results, it is evident that the ratio mass of $C:KMnO_4:H_2SO_4(98\%):H_2BO_3$ has important influence on EG_B dilatability, and the feasible value should be controlled as 1.0:0.4:5.0:0.6 (g·g⁻¹) At the same time, H_2SO_4 should be diluted to 78 wt % before intercalation reaction, and intercalating reaction lasted 40 min at 40°C, then EV and T_0 of the prepared EG_B can reach 570 mL·g⁻¹ and 141°C, respectively. The intercalating reaction between graphite and H_2SO_4 , H_3BO_3 can be revealed by XRD and FTIR analysis. EG_{R} presents more effective flame retardancy for LLDPE than the reference EG.

ACKNOWLEDGEMENTS

This study is supported by project of *Natural Science Foundation of Hebei Province Numbered B2015201028.* At the same time, we gratefully acknowledge the support of *Seedling Project of College of Chemistry and Environmental Science*, Hebei University.

REFERENCES

- [1] J.E.Fischer, T.E.Thompson; Phys.Today, **31**, 36 (2008).
- [2] G.Q.Liu, M.Yan; New Carbon Mater., 17, 13 (2002).

- [3] Z.D.Sun, Y.H.Ma, Y.Xu, X.L.Chen, M.Chen, J.Yu, S.C.Hu, Z.B.Zhang; Polym.Eng.Sci., 54, 1162 (2014).
- [4] C.Q.Wang, F.Y.Ge, J.Sun, Z.S.Cai; J.Appl.Polym.Sci., 130, 916 (2013).
- [5] R.C.Xie, B.J.Qu; Polym.Degrad.Stab., 71, 375 (2001).
- [6] C.F.Kuan, K.C.Tsai, C.H.Chen, H.C.Kuan, T.Y.Liu, C.L.Chiang; Polym.Composites, 33, 872 (2012).
- [7] M.Thirumal, D.Khastgir, N.K.Singha, B.S.Manjunath, Y.P.Naik; J.Appl.Polym.Sci., 110, 2586 (2008).
- [8] Z.D.Han, D.W.Zhang, L.M.Dong, X.Y.Zhang; Chinese Inorg.Chem.Acta, 23, 286 (2007).
- [9] L.Wang, K.M.Song, M.Y.Zhang, T.Feng; Non-Metallic Mines., 31, 19 (2008).
- [10] S.L.Li, B.H.Long, Z.C.Wang, Y.M.Tian, Y.H.Zheng, Q.Zhang; J.Solid State Chem., 183, 957 (2010)
- [11] M.Inagaki, N.Iwashita, E.Kouro; Carbon, 28, 49 (1990).
- [12] V.V.Avdeev, L.A.Monyakina, I.V.Nikol'skaya, N.E.Sorokina, K.N.Semenenko, A.I.Finaenov; Carbon, 30, 825 (1992).
- [13] X.Y Pang, Y.Tian, M.W.Duan, M.Zhai; Cent.Eur.J.Chem., 11, 953 (2013).
- [14] J.Li, S.P.Xia, S.Y.Gao; Spectrochim.Acta A, 51, 519 (1995).
- [15] C.F.Zuo; Synthesis and thermo chemistry of the hydrated calcium borates, Master's Thesis, Shanxi Normal University, Xian (2005).

Full Paper